
Coupling of Rotation and Catalysis in
F1-ATPase Revealed by Single-Molecule
Imaging and Manipulation
Kengo Adachi,1 Kazuhiro Oiwa,2 Takayuki Nishizaka,3 Shou Furuike,1 Hiroyuki Noji,4 Hiroyasu Itoh,5

Masasuke Yoshida,6,7 and Kazuhiko Kinosita, Jr.1,*
1Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
2Kobe Advanced Research Center, National Institute of Information and Communications Technology, Nishi-ku,

Kobe 651-2492, Japan
3Department of Physics, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
4The Institute of Scientific and Industrial Research, Osaka University, Ibaragi, Osaka 567-0047, Japan
5Tsukuba Research Laboratory, Hamamatsu Photonics KK, and CREST ‘‘Creation and Application of Soft Nano-Machine,
Hyperfunctional Molecular Machine’’ Team 13, Tokodai, Tsukuba 300-2635, Japan
6ATP System Project, Exploratory Research for Advanced Technology (ERATO), Midori-ku, Yokohama 226-0026, Japan
7Chemical Resources Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan

*Correspondence: kazuhiko@waseda.jp
DOI 10.1016/j.cell.2007.05.020
SUMMARY

F1-ATPase is a rotary molecular motor that
proceeds in 120� steps, each driven by ATP hy-
drolysis. How the chemical reactions that occur
in three catalytic sites are coupled to mechani-
cal rotation is the central question. Here, we
show by high-speed imaging of rotation in sin-
gle molecules of F1 that phosphate release
drives the last 40� of the 120� step, and that
the 40� rotation accompanies reduction of the
affinity for phosphate. We also show, by sin-
gle-molecule imaging of a fluorescent ATP ana-
log Cy3-ATP while F1 is forced to rotate slowly,
that release of Cy3-ADP occurs at �240� after
it is bound as Cy3-ATP at 0�. This and other
results suggest that the affinity for ADP also de-
creases with rotation, and thus ADP release
contributes part of energy for rotation. Together
with previous results, the coupling scheme is
now basically complete.

INTRODUCTION

F1-ATPase is a rotary molecular motor in which a central g

subunit rotates against hexagonally arranged subunits

a3b3 (Abrahams et al., 1994; Boyer and Kohlbrenner,

1981; Kinosita et al., 2000, 2004; Noji et al., 1997; Weber

and Senior, 2000; Yoshida et al., 2001). Three b subunits,

each hosting a catalytic site, hydrolyze ATP sequentially to

power the rotation of the g subunit. It is a reversible molec-

ular machine in that, when g is rotated in the reverse direc-

tion by an external force, ATP is synthesized in the cata-

lytic sites (Itoh et al., 2004). The reversal achieved by
manipulation of the g angle alone implies a g-dictator

mechanism: the rotary angle of g determines which of

the chemical reactions is to occur in each catalytic site,

binding/release of ADP and inorganic phosphate (Pi),

synthesis/hydrolysis of ATP, and release/binding of ATP

(Kinosita et al., 2004). During rotation driven by ATP hydro-

lysis, the three catalytic sites (and the three b subunits) will

cooperate by communication through the g angle.

A major task that remains is to establish the actual

coupling scheme between the g rotation and chemical

reactions. Here we propose the scheme in Figures 1A

and 1B (or 1C) for ATP-driven rotation; in principle, ATP

synthesis by reverse rotation would follow the same

scheme in reverse. Previously we have shown that rota-

tion of F1-ATPase occurs in steps of 120�, each driven

by hydrolysis of one ATP molecule (Adachi et al., 2000;

Yasuda et al., 1998). At submillisecond time resolution,

the 120� step is further resolved into 80�–90� and 40�–30�

substeps. Initially we reported the substep amplitudes

as 90� and 30� (Yasuda et al., 2001), but subsequent

studies (Hirono-Hara et al., 2001; Nishizaka et al., 2004;

Shimabukuro et al., 2003) indicated that they are closer

to 80� and 40�. Hereafter, we adopt the latter values,

although experimental precision does not warrant abso-

lute distinction and a possibility remains that a third small

substep may exist between the two (Kinosita et al., 2004).

The 80� substep is driven by ATP binding, and the 40�

substep by release of ADP or Pi (Yasuda et al., 2001). After

a 80� substep, g dwells on 80� for �2 ms, during which

two �1 ms reactions take place (Yasuda et al., 2001).

One of the reactions at 80� has been identified as ATP

hydrolysis (Shimabukuro et al., 2003). The ATP that is

hydrolyzed there is one that was bound 200� ago

(Figure 1B; Nishizaka et al., 2004): an ATP molecule

that is bound at 0� will be hydrolyzed after g rotates

for 120� + 80�.
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Figure 1. Proposed Coupling Scheme

(A) Schematic time course of stepping rotation. Vertical axis is the rotary angle of g, and the horizontal axis time. Colored events take place in the

catalytic site shown in the same color in (B) or (C).

(B) Corresponding nucleotide states in the three catalytic sites. The three circles represent three b subunits that each hosts a catalytic site. The central

gray ellipsoid represents the g subunit, the thick arrow showing its orientation; the twelve o’clock position in (i) corresponds to 0� in (A). Molecular

species derived from the same ATP molecule are shown in the same color. Small arrows show the progress in this major reaction pathway; the con-

figurations (ii), (ii’), and (ii’’) shown below the major path represent the instant immediately after ATP binding, i.e., the start of a 80� substep.

(C) An alternative scheme in which Pi release lags behind ADP release.
Here, we show by high-speed imaging of g rotation that

the other of the two �1 ms reactions at 80� is Pi release,

and that the Pi release drives the last 40� substep. We

also show that ADP is released at 240� after it is bound

as ATP at 0�, by direct observation of the binding and

release of a fluorescent ATP analog 20-O-Cy3-EDA-ATP

(Oiwa et al., 2003), hereafter referred to as Cy3-ATP, in

a single molecule of F1-ATPase. These two findings com-

plete the basic scheme as shown in Figure 1B, with a pos-

sible alternative in Figure 1C. A similar scheme has been

proposed (Weber and Senior, 2000).

RESULTS

Timing of Phosphate Release

In this study, we used the minimal subcomplex of F1-

ATPase that is active in hydrolysis and rotation, composed

of a3b3g subunits. The subcomplex, which we refer to as

F1 in this paper, was derived from thermophilic Bacillus

PS3 and has been modified such that it has only two

cysteine residues at the protruding portion of g and that

each b has a histidine tag at the amino terminus

(a-C193S, b-His10 at amino terminus, g-S107C, g-

I210C). Because these modifications are minor, we regard

this mutant as wild-type. We immobilized the F1 molecules

on a glass surface functionalized with Ni-NTA that would

bind the introduced histidines on b. To observe rotation,
310 Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc.
we biotinylated the cysteines on g and attached a 40 nm

gold bead through streptavidin-biotin linkages. Because

the bead was small, the rate of rotation would be limited

by chemical reactions rather than viscous friction against

the bead, and thus we should be able to resolve the 80�

and 40� substeps.

To see whether it is the release of Pi or ADP that induces

the 40� substep, we added phosphate to the buffer for

rotation assay. In the absence of Pi and at 2 mM ATP,

we observed 80� dwells averaging �2 ms, as before

(Yasuda et al., 2001), whereas ATP-waiting dwells at

0� (and multiples of 120�) were short and mostly unre-

solved at the temporal resolution of 0.125 ms (black in

Figure 2A). Addition of Pi increased the dwell time at

80�, without much effect at 0� (red and magenta in Fig-

ure 2A), suggesting that Pi release triggers 40� substeps.

At 20 mM ATP, near the Michaelis-Menten constant Km

for unloaded rotation and hydrolysis (Yasuda et al.,

2001), both 0� and 80� dwells were clearly resolved, with

similar dwell times in the absence of Pi (black in

Figure 2B). Addition of Pi at 20 mM ATP prolonged both

dwells (red and magenta in Figure 2B). KCl also prolonged

the 0� dwell, but not the 80� dwell (green in Figure 2B),

suggesting that only the prolongation of the 80� dwell is

specific to phosphate. We further examined the effect of

divalent anions, inorganic sulfate and organic succinate

(Figures 2C–2F). The plots versus ionic strength (Figures

2E and 2F) show that both 0� and 80� dwells are sensitive



Figure 2. Effect of Phosphate on Substep Kinetics

(A and B) Time courses of stepping rotation of a 40 nm gold bead at

indicated [ATP] with addition of Pi or KCl as indicated; black curves,

no addition. Curves with the same color are continuous, shifted to

save space. Horizontal solid lines are separated by 120�, showing

ATP-waiting angles, and dotted lines are drawn 40� below. For arrows,

see legend to Figure 3.

(C and D) Effect of indicated ions on the dwell time at 80� (C) and 0� (D).

In records of >15 continuous revolutions, all dwells on the dotted lines

as in (A) or (B) were counted as 80� dwells, and those on solid lines as

0� dwells; 0� dwells from which a 40� backward substep occurred

were discounted. Dwell times were measured between the ends of

preceding and following substeps; the ends were identified as the first

point, within the fluctuation level, of the next dwell; 0� dwells at 2 mM

ATP were mostly absent and given a value of 0 s. Each symbol shows

a mean ± SEM over 2–5 molecules.

(E and F) Data in (C) and (D) plotted against the ionic strength (see

Experimental Procedures).
to the ionic strength, the 80� dwell to a much lesser extent,

and that the effect of Pi on the 80� dwell is outstanding

among others, even against its kin sulfate. Thus we con-

clude that the 40� substep terminating a 80� dwell is trig-

gered by the release of phosphate. The unusually high Pi

concentration ([Pi]) needed to retard the 40� substep is

due to rapid rotation of g in the 40� substep, which takes

less than our resolution of 0.125 ms: Pi has to rebind

before g rotates (see below for quantitative analysis).

We further propose that Pi release not only triggers

the 40� substep, possibly by initiating a next reaction(s)

that causes the 40� substep, but is the reaction that is

directly coupled to the 40� rotation. If Pi release is the direct

cause, rebinding of Pi after a 40� substep should lead to

reversal of the substep. We indeed observed frequent

reversals at 500 mM Pi, as seen in magenta lines in Fig-

ure 2B. When driving force for rotation originates from Pi re-

lease, that rotation should accompany a decrease in the

affinity of the catalytic site for Pi (Kinosita et al., 2004).

This explains why 500 mM Pi was required to observe

frequent backward substeps, as analyzed in detail below.

Kinetics and Energetics of Phosphate Release

In this section, we determine from experiments the rate

constants in Figure 3A and thereby estimate the free-

energy differences among the four configurations. We

consider the free energy G of the system composed of F1

and medium as the function of the chemical state S of F1

(we denote the states before and after Pi release as S =

F1$ADP$Pi and F1$ADP; the analysis below applies to

Figure 1C as well), the g angle q (conformation of F1 for

the given chemical state), and [Pi] (Kinosita et al., 2004).

Although q is a continuous variable, here we adopt the

simple two-conformation diagram in Figure 3A and

neglect intermediate conformations (80� < q < 120�), which

would not be populated significantly because 40� rotation

is fast.

We denote the angle-dependent rates for Pi release

and rebinding by kPi
offðqÞ and kPi

onðqÞ, respectively, where

q = 80� or 120�. Then, DGbindðqÞ, per F1 molecule, for

Pi binding at q (magenta to green in Figure 3A) is given

by

DGbindðqÞhGðF1,ADP,Pi; q; ½Pi�Þ �GðF1,ADP; q; ½Pi�Þ
= kBT lnKPi

d ðqÞ � kBT ln½Pi� (1)

where KPi
d ðqÞ= kPi

offðqÞ=kPi
onðqÞ is the angle-dependent

dissociation constant and kBT = 4:1pN$nm the thermal

energy at room temperature. Rotary rates k + and k� are

related to DGrotðSÞ, the change in conformational energy

upon rotation in the given chemical state S, or the

mechanical work needed for the rotation, by

DGrotðSÞhGðS; 120�; ½Pi�Þ �GðS; 80�; ½Pi�Þ
= kBT ln

�
k�ðSÞ=k + ðSÞ

�
ð2Þ

Previous studies have indicated that the work done in

120� rotation amounts to 80–90 pN$nm, and that the
Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc. 311



Figure 3. Kinetics of Phosphate Release and Rebinding

(A) Free-energy diagram for the 40� substep from 80� to 120�. Arrows indicate rate constants; experimental values, in /s, are shown in parentheses for

[Pi] of 500 mM; values in double parentheses are mere guess, except that their ratio is experimental.

(B) Histograms of dwell times at 80�. Dwells were identified and measured as in purple arrows in Figure 2B (also see Figure 2 legend). Each histogram

was from five molecules (three at 50 mM Pi). Cyan line shows fit with constant3{expð�k1tÞ � expð�k2tÞ}. Magenta lines show a global fit to the four

histograms with Equation 8: R2, the coefficient of determination, is 0.993, 0.970, 0.953, and 0.912 for the four individual histograms (0.972 for all);

global fits in which one each of the four histogram was omitted gave parameter values within 10% of those in total fit.

(C) Pi dependence of the first-order Pi rebinding rate at 80� obtained from the global fit in (B). Error bars show SEM.

(D) Histograms of dwell times at 120� (equivalent with 0�), each from 2–5 molecules. Dark gray, dwells terminated by a backward substep, i.e., be-

tween 80�/120� and 120�/80� substeps (dark green arrows in Figure 2B); light gray, all dwells including those terminated by a forward substep, i.e.,

between 80�/120� and 120�/200� substeps (yellow-green arrows in Figure 2B), and those shown in dark gray. Green lines are single-exponential

fits to each light gray histogram.

(E and F) The apparent second-order rate of Pi rebinding (E) and ATP binding (F) at 120� obtained from fits in (D). Gray symbols, [MgATP] corrected for

chelation of Mg by Pi (see Experimental Procedures). Errors (SEM) are smaller than the symbols, except for an error bar in (F). Lines are linear fits with

a common y intercept.
energy-conversion efficiency may reach �100% (Yasuda

et al., 1998). Because the torque of this motor is nearly

constant over rotary angles (Kinosita et al., 2000, 2004),

the work in the 40� (or possibly 30�) substep is given

simply as {(40�–30�)/120�} 3 (80–90) pN$nm = (20–30)

pN$nm z25 pN$nm. The high efficiency suggests that
312 Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc.
this work is nearly equal to the available conformational

energy (Kinosita et al., 2004):

DGrotðF1,ADPÞz� 25 pN,nm (3)

In the Pi-bound state, the 80� conformation must be sta-

ble, and thus



DGrotðF1,ADP,PiÞ > 0 (4)

Consistency requires

�DGbindð80�Þ+ DGrotðF1,ADPÞ+ DGbindð120�Þ
� DGrotðF1,ADP,PiÞ= 0

or

kPi
offð80�Þ3 k + ðF1,ADPÞ3 kPi

onð120�Þ3 k�ðF1,ADP,PiÞ
= kPi

offð120�Þ3 k�ðF1,ADPÞ3 kPi
onð80�Þ

3 k + ðF1,ADP,PiÞ ð5Þ

Now we determine the eight rate constants in Figure 3A.

We first analyze the events at 80�. Figure 3B shows histo-

grams of dwell times at 80�. Reactions that determine the

duration of a 80� dwell are

F1ð80�Þ,ATP ����!khydð80�Þ
F1ð80�Þ,ADP,Pi ������! ������kPi

offð80
� Þ

kPi
rebindð80

� Þ

F1ð80�Þ,ADP ��������!k + ðF1$ADPÞ
F1ð120�Þ,ADP ð6Þ

where khydð80�Þ is the rate of ATP hydrolysis, and

kPi
rebindð80�Þ represents the first-order rate kPi

onð80�Þ½Pi�; we

have assumed that the rate of thermal process

k + ðF1,ADP,PiÞ is negligible, as justified below. Simulta-

neous, or global, fit to all four histograms at [ATP] =

20 mM in Figure 3B with this scheme (see Experimental

Procedures), with all parameters in common except for

kPi
rebindð80�Þ, gave khydð80�Þ = (4.1 ± 0.1) 3 103 s�1,

kPi
offð80�Þ = (8.4 ± 0.1) 3 102 s�1, k + ðF1,ADPÞ = (1.8 ± 0.1) 3

104 s�1, and kPi
rebindð80�Þ values shown in Figure 3C (errors

in this paper are SEM, standard error of a mean, unless

stated otherwise). Though let free, kPi
rebindð80�Þ was found

to be proportional to [Pi] (Figure 3C), as expected, and

the slope gave the second-order rate kPi
onð80�Þ of (1.7 ±

0.1) 3 105 M�1s�1. This rate is two orders of magnitude

smaller than the rate of ATP binding at 0� (Yasuda et al.,

2001), suggesting that the Pi-release site at 80� is less

open than the site waiting for ATP at 0�. The rate

k�ðF1,ADPÞ for thermally agitated rotation in the reverse

direction is calculated from Equation 3 as 4.0 3 101 s�1.

The dissociation constant for Pi at 80�, KPi
d ð80�Þ =

kPi
offð80�Þ/ kPi

onð80�Þ, is 4.9 mM, which is close to physiolog-

ical [Pi]. Al-Shawi et al. (1997) have reported a similar value

of �3 mM for Km for ATP synthesis in E. coli F1.

Of the remaining four of the eight rate constants in

Figure 3A, we set k�ðF1,ADP,PiÞ z104 s�1, because

the backward 40� substep was as fast as the forward sub-

step with k + ðF1,ADPÞ of 1.8 3 104 s�1. The rest were

obtained from the analysis of dwells at 120� (Figure 3D),

as detailed in Experimental Procedures. At this angle,

a 40� backward substep driven presumably by Pi rebind-

ing (thermal rate k�ðF1,ADPÞ being small) and a forward

80� substep driven by ATP binding compete with each

other. The simplest scheme is
F1ð80�Þ,ADP,Pi �������kPi;app
on ,½Pi�

F1ð120�Þ,ADP

����������!kATP
on ð120�Þ,½ATP�

F1ð200�Þ,ADP,ATP ð7Þ

where kPi;app
on ð120�Þ and kATP

on ð120�Þ are apparent binding

rates defined by this simplified scheme. This scheme pre-

dicts an exponential dwell-time distribution, exp(-kt). Fit-

ting each histogram in Figure 3D yielded four values of

k = kPi;app
on ½Pi + kATP

on ½ATP�
�

, which we plot as k/[Pi] in

Figure 3E and k/[ATP] in Figure 3F. The intercepts at

[ATP] = 0 and [Pi] = 0 respectively gave kPi;app
on ð120�Þ =

(4.4 ± 2.5) 3 101 M�1s�1 and kATP
on ð120�Þ = (2.0 ± 0.3) 3

107 M�1s�1, the latter being consistent with the previous

estimate (Yasuda et al., 2001). From kPi;app
on ð120�Þ together

with other constraints, we obtain two possible sets of pa-

rameters (Experimental Procedures): (i) k + ðF1,ADP,PiÞz
102 s�1, and KPi

d ð120�Þ= kPi
offð120�Þ/ kPi

onð120�Þz 2 3 102 M.

The last two rates could not be determined except for the

ratio, and we make an arbitrary choice of kPi
offð120�Þ = 107

s�1 and kPi
onð120�Þ = 5 3 104 M�1s�1. (ii) k + ðF1,ADP,PiÞz

3 3 102 s�1, kPi
offð120�Þz 3 3 103 s�1, and kPi

onð120�Þz 4 3

101 M�1s�1, giving KPi
d ð120�Þz 7 3 101 M. The two sets (i)

and (ii) give similar values for KPi
d ð120�Þ, 200 M or 70 M,

which is >104 greater than KPi
d ð80�Þ of 4.9 mM; a state of

F1 where Kd is far above 1 M has been documented

(Weber and Senior, 2000), though it is not clear whether

it corresponds to KPi
d ð120�Þ. The >104-fold reduction in

affinity drives the 40� rotation. DGrotðF1,ADP,PiÞ in Equa-

tion 2 is 18 pN$nm in (i) and 14 pN$nm in (ii), which are

indistinguishable. Both are positive, �4 kBT, implying

that the Pi-bound state is more stable at 80� than at

120�. Because the set (ii) is only marginally possible (Ex-

perimental Procedures), we opt for (i) and show, in

Figure 3A, numerical values of the rate constants at 500

mM Pi in parentheses, the two arbitrary rates in double pa-

rentheses. At different [Pi]s, the two green bars shift verti-

cally by a same amount, according to Equation 1. At phys-

iological [Pi] of �5 mM, green and magenta bars at 80�

nearly overlap, whereas at 120�, the green bar is above

by �11 kBT (probability of finding bound Pi z0.00003).

Timing of ADP Release during Slow,

Controlled Rotation

Having established the timing of phosphate release, we

next inquire when ADP is released. Because F1-ATPase

is prone to inhibition by MgADP (Hirono-Hara et al.,

2001), we could not add ADP in the medium as in the ex-

periments with phosphate above. Instead we directly visu-

alized the binding and release of Cy3-AT(D)P on single

molecules of F1 with total internal reflection fluorescence

(TIRF) microscopy. Simultaneously, we controlled the rota-

tion of F1 with magnets by attaching a magnetic bead(s) to

g, while imaging the bead movement with bright-field mi-

croscopy (Figure 4A). Cy3-ATP bound to F1 appeared as

a bright spot in the fluorescence image, whereas unbound

Cy3-ATP gave dim, homogeneous background because

of its rapid Brownian motion in solution (Funatsu et al.,
Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc. 313



Figure 4. Angle between Binding and Release of Cy3-ATP during Controlled Rotation

(A) Experimental design for observation of Cy3-ATP binding during rotation controlled with magnets (not to scale). Cy3-ATP bound to F1 was imaged

by TIRF microscopy through the entire edge of the objective lens, and, simultaneously, rotation of magnetic beads attached to g was observed by

bright-field microscopy. Quadripolar electromagnets were mounted over the sample stage to control the magnetic beads.

(B) Sequential bright-field images, at 100-ms intervals, of magnetic beads (upper rows) and fluorescence images of single Cy3-ATP molecules (lower

rows) at 100 nM Cy3-ATP and 200 nM unlabeled ATP under a rotary magnetic field at 0.5 Hz. Images have been spatially averaged over 6 3 6 pixels

(1 mm = 10.2 pixels), and then averaged over 2 frames.

(C) Histogram of angles between binding and release at various rotation speeds. Events involving overlapping binding periods are excluded. Total

counts for all speeds (red) are fitted by a Gaussian curve (black line) with a peak and SD of 245� ± 57� (8 molecules).
1995; Nishizaka et al., 2004). Detection of single fluoro-

phores requires an integration time, and thus we used or-

dinary video cameras at 30 frames/s for the results below.

To resolve the angles of binding and release at 30

frames/s, we forced g to rotate slowly in the hydrolysis di-

rection at a constant speed using electromagnets (Fig-

ure 4A). The medium contained 100 nM Cy3-ATP and

200 nM ATP, and the rotary speed was lower than �1.7

revolutions/s, time-averaged rate of rotation driven by un-

labeled ATP at 200 nM. The rate of Cy3-ATP binding was

about one-tenth that of unlabeled ATP (see below), and

thus F1 bound mostly unlabeled ATP and occasionally

Cy3-ATP (Figure 4B). When Cy3-ATP was bound, it was

released, presumably as Cy3-ADP, after 245� ± 57� (SD)

of rotation, irrespective of the rotary speed (Figure 4C). If

this result applies to unlabeled ATP as well, ATP that is

bound at 0� will be released as ADP at �240�, simulta-

neous with the binding of a third ATP (Figure 1A).

Timing of ADP Release during Stepping Rotation

We also examined the timing of Cy3-ADP release during

spontaneous, uncontrolled rotation. At the video rate,

resolving the release angle during stepping motion was

impossible, but we hoped to distinguish whether release

occurred in the first 80� or second 40� portion of a step.

To resolve the substeps, we used ATP-g-S for which the

80� dwell is extended to �70 ms presumably because

its cleavage on F1 is slow (Shimabukuro et al., 2003). At

60 nM Cy3-ATP and 60 nM ATP-g-S, some of the 120�
314 Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc.
steps were clearly resolved into 80� and 40� substeps

(Figure 5A). When Cy3(-ADP) was released in a resolved

120� step, the release occurred in the 80� substep, after

binding of Cy3-ATP and subsequent 240� rotation (be-

tween green lines in Figure 5A). Previously we have shown

that Cy3-ATP bound at 0� is released in a 120� step be-

tween 240� and 360� (Nishizaka et al., 2004), and now

we show that the release occurs between 240� and

320�, consistent with the forced-rotation result above

that the angle between binding and release is �240�.

For the spontaneous rotation at 60 nM Cy3-ATP and

60 nM ATP-g-S, we observed 297 pairs of binding and re-

lease in 23 F1 molecules. Most were consistent with the

scheme in Figure 1, but there were exceptions indicative

of non-major reaction pathways. In the following statistics,

we regard a 120� step to be resolved into substeps when

the bead stayed at �80� for two video frames (67 ms) or

longer: otherwise the step is classified as an unresolved

120� step. We judged binding/release and a step/substep

to be coincident when one was within two frames of the

other. (i) Of the 297 pairs, 205 (69%) were normal without

reservation, in that binding of Cy3-ATP at 0� (an ATP-

waiting angle) was coincident with a 80� substep or an un-

resolved 120� step, and that release of Cy3 occurred in

a step or 80� substep starting from 240�. Of the 205, 47

binding events were associated with a resolved substep

pair, and all these bindings were in a 80� substep; 59 re-

lease events were coincident with a resolved substep, all

80� and none 40�. (ii) In 26 pairs (9%), release occurred



after 360� rotation or more. Most of these can be ex-

plained by successive binding of two or more Cy3-ATP

molecules, and are thus considered normal. (iii) In 66 pairs

(22%), binding and release angles were separated by less

than 240�, or release occurred at 240� without rotation.

(iiia) In 35 cases (12%) out of the 66, either binding or re-

lease was not synchronous with rotation. Possible expla-

nations are blinking (momentary disappearance of fluores-

cence) or photobleaching (irreversible destruction) of Cy3

fluorophore while the F1 still followed the reaction scheme

in Figure 1. However, control experiments (see Calibration

below) showed blinking was rare and average photo-

bleaching time was 56 s, much longer than the stepping in-

tervals of < 1 s. In addition, (iiib) the rest of 31 pairs (10%)

could not be explained by the scheme in Figure 1. We think

that these irregular behaviors, together with some or most

of the events in iiia, represent non-major reaction path-

ways that we describe fully in the next section. Briefly,

bound Cy3-nucleotide that had undergone 240� of rotation

tended to dissociate from F1 before the arrival of a next

ATP(-g-S) that would induce rotation toward 360�; the re-

lease at 240� was often, but not always, accompanied by

a 40� backward substep to 200�, and rebinding of Cy3 after

Figure 5. Binding and Release of Cy3-ATP during Spontane-

ous Rotation

Time courses of Cy3-ATP binding and stepping rotation. (A) Wild-type

F1 at 60 nM Cy3-ATP and 60 nM ATP-g-S. (B) b-E190D mutant at

100 nM Cy3-ATP and 2 mM unlabeled ATP. Red curves show fluores-

cence intensity in a spot of 8 3 8 pixels (0.784 3 0.784 mm2), median-

filtered over 6 video frames (0.2 s) in (A) and 8 video frames in (B). Pink

horizontal lines, intensity levels for the indicated number of bound

Cy3-ATP molecules (see Experimental Procedures). Blue curves

show rotation time courses, cyan parts between green vertical lines in-

dicating the period when Cy3-ATP was bound. Horizontal dotted lines

are 40� below the solid lines that show ATP-waiting angles. Insets,

trace of the centroid of the bead image, cyan part indicating binding.
a 40� backward substep was also observed. We consider

that these irregular behaviors are peculiar to low ATP envi-

ronments where thermal agitations into non-major path-

ways can compete with infrequent arrivals of ATP.

Substeps with ATP-g-S were not always resolved, and

therefore we attempted another experiment with a mutant

F1 (b-E190D) which cleaves ATP 100-fold slower (and

binds ATP 10-fold slower) than wild-type F1 (Shimabukuro

et al., 2003). At 100 nM Cy3-ATP and 0.6 or 2 mM unla-

beled ATP, most of substeps were resolved, and binding

of Cy3-ATP was coincident with a 80� substep, and the

release with another 80� substep after 240� rotation

(Figure 5B). We observed 59 pairs of binding/release in

24 molecules. About 90% of binding was in a 80� substep,

and �70% of release was in a substep from 240� to 320�.

When this mutant bound Cy3-ATP at 0�, the dwell at 200�

became extremely long, averaging 33 s, indicating that

cleavage of Cy3-ATP occurs at this angle and the Cy3

moiety impedes cleavage, as in another mutant (Nishizaka

et al., 2004). About 25% of apparent release occurred in

the midst of the long dwell at 200�, suggesting that the

actual cause was photobleaching.

Site Occupancy during Stepping Rotation

The results that Cy3-ATP is released after �240� of rota-

tion implies that, of the three catalytic sites, two are always

occupied by a nucleotide, i.e., the site occupancy remains

two, except for angles around 240�. To directly confirm

this, we observed rotation driven entirely by Cy3-ATP

(no unlabeled ATP) while watching the fluorescence inten-

sity to estimate the number of bound Cy3-nucleotides.

Rotation driven by Cy3-ATP alone was an order of mag-

nitude slower than that by unlabeled ATP, with an apparent

binding rate kCy3-ATP
on of (1.6 ± 0.8) 3 106 M�1s�1

(Figure 6A), compared to kATP
on ð120�Þ of 2.0 3 107 M�1s�1

estimated in the Pi analysis above or a previous value of

2.6 3 107 M�1s�1 (Yasuda et al., 2001). At the low [Cy3-

ATP] examined, rotation was stepwise, with exponential

distribution of dwell times consistent with the kCy3-ATP
on

above (Figure 6B). We also confirmed on individual F1

molecules that stepping angles are the same for ATP and

Cy3-ATP. Cy3-ATP is thus a fairly good substrate for F1.

At [Cy3] >200 nM, we could not resolve reliably bound

Cy3 against background. With Cy3-ATP at 50, 100, and

150 nM, at most two nucleotides were bound to F1 during

rotation (Figures 6C and 6D). Regular 120� steps starting

from an ATP-waiting angle occurred mostly while the

site occupancy remained two (Figures 6C and 6E), as ex-

pected. During these steps, the occupancy may well have

risen to three for a moment, but the change could not be

detected at the video rate.

At the low [Cy3-ATP] and thus at low stepping frequen-

cies, we observed a variety of irregular behaviors other

than the normal 120� steps, as summarized in Figure 6E.

Four outstanding patterns are indicated by color in Fig-

ures 6C–6E, where cyan, a stepping motion while the oc-

cupancy remains two, represents mostly, but not exclu-

sively, the normal 120� steps. From an ATP-waiting
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Figure 6. Rotation Driven by Cy3-ATP Alone

(A) Comparison of time-averaged rotation rates driven by Cy3-ATP and unlabeled ATP. Red circles, rotation of individual molecules driven by Cy3-

ATP (12–38 molecules at each concentration) averaged over >3 continuous revolutions; red squares, average over molecules. Red line is a linear fit

with ðkCy3-ATP
on =3Þ3½Cy3-ATP� between 50 nM and 1 mM, where kCy3-ATP

on = (1.6 ± 0.8) 3 106 M�1s�1. Black diamonds show published rotation rates for

a 40 nm bead in unlabeled ATP (Yasuda et al., 2001), for which kATP
on = (2.6 ± 0.5) 3 107 M�1s�1.

(B) Histograms of dwell times between 120� steps at indicated [Cy3-ATP]. Substeps and backward steps are ignored, as in the vertical dotted lines in

(C) and (D). Black lines are fit with constant3expð�kCy3-ATP
on ½Cy3-ATP tÞ� ; obtained rates are shown on the graphs.

(C and D) Time courses of Cy3-ATP binding and stepping rotation at 150 nM Cy3-ATP (C) and 50 nM Cy3-ATP (D). Red lines show the spot intensity

(0.784 3 0.784 mm2) median-filtered over 16 video frames (0.533 s). Pink horizontal lines, intensity levels for the indicated numbers of bound Cy3-ATP.

Blue lines show rotation, and vertical dotted lines mark beginnings of 120� steps which may accompany substeps in either directions in between.

Insets, trace of the centroid of the bead image. Arrow heads indicate transition patterns in (E), color-coded; numbers indicate repetitions of the

same transition, which are too close to each other on this time scale.

(E) Angular histograms for typical transition patterns at [Cy3-ATP] of 50 nM (3 molecules), 100 nM (8), and 150 nM (8) combined. When the number of

bound Cy3-nucleotides changed, the bead angles before and after the change were registered. Or, when F1 made a rotary step of amplitude >40�

between plateaus of 5 frames or longer, the start and end angles as well as Cy3 number were registered. Angular changes less than 40� were also

registered if it was between plateaus of >20 frames and clearly distinguishable from fluctuations. Left panels show the difference between the end and

start angles. Right panels show the start (light gray) and end (dark gray) angles, modulo 120�; duplicated to 240� to show peaks around 120�, which

represents an ATP-waiting angle.
angle, F1 often made a backward�40� substep accompa-

nied by release of a Cy3-nucleotide, resulting in a one-nu-

cleotide state at�80� (e.g., orange arrowheads at 58 s and

111 s in Figure 6D). One-nucleotide state appeared me-

chanically unstable in that, while the occupancy remained

one (green), F1 made steps of various sizes either forward
316 Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc.
or backward, with a tendency to come back to a �80�

position (these steps may have accompanied unresolved

momentary binding of Cy3-ATP). Restoration of a two-

nucleotide state by binding of Cy3-ATP (magenta) occurred

mostly from a �80� position, with four major rotation pat-

terns categorized into two major consequences: making



a forward 40� or 160� step to reach an ATP-waiting angle to

resume normal behavior, or staying at a�80� position either

without rotation or by a forward 120� step into another�80�

position. In the latter cases where F1 remained ata�80� po-

sition, it sometimes released and rebound a nucleotide

without rotation (e.g., at 29–30 s in Figure 6D).

Similar, irregular behaviors have been observed with

unlabeled ATP, at nano- to subnanomolar concentrations

where stepping frequency is�10�2/s or less: occasionally

F1 makes a 40� backward step from an ATP-waiting angle

and begins to step forward and backward, remaining

mostly in �80� positions separated by 120� (Sakaki

et al., 2005). Our interpretation is the following: normally

at higher [ATP], ADP to be released from the two-

nucleotide ATP-waiting state stays on F1 until the next

ATP binds (Figures 1A and 1B). If, however, the next

ATP fails to arrive for a time of the order of 102 s (101 s if

the leaving nucleotide is Cy3-ADP), the ADP is spontane-

ously released. Once fallen into one-nucleotide state, F1

wanders on non-major reaction pathways (toward hydro-

lysis direction on average, though), until ATP binds to the

correct catalytic site at a correct timing to bring the F1

back to the normal pathway. Details of the non-major

pathways are yet to be studied, but it is worthwhile to

note in Figure 6E that rotation tends to go in the hydrolysis

direction when the site occupancy increases (1/2 or 0/

1) whereas decrease in occupancy tends to push F1 in the

synthesis direction.

Site Occupancy during Constant-Speed Rotation

To resolve the change in site occupancy during rotation,

we again used magnets to force F1 to rotate at a slow, con-

stant speed (Figure 7). At 150 nM or 100 nM Cy3-ATP, the

occupancy remained two for most of the time. Often, the

occupancy dropped to one around an ATP-waiting angle,

but F1 soon bound medium Cy3-ATP to restore the occu-

pancy to two; unlike the free stepping situation, F1 here

was forced to rotate in the forward direction, and forward

rotation is expected to increase the affinity of F1 for ATP

(Yasuda et al., 2001). In other cases where the occupancy

remained apparently two, quick succession of binding and

release should have occurred. We did not find unambigu-

ous sign of a three-nucleotide state lasting tens of de-

grees, consistent with the result in Figure 4 that ADP to

be released cannot cling to F1 much beyond 240�, at least

when rotation is slow.

We often noticed a bead to rotate abruptly in the forward

direction near ATP-waiting angles (vertical dotted lines in

Figure 7), indicating sudden generation of forward torque.

(i) In 44% (46/105) of such rapid bead displacements, the

site occupancy remained two, and (ii) in 8% (8/105) appar-

ently remained one. (iii) In 28% (29/105), the displacement

was synchronous with Cy3-ATP binding (occupancy 1/

2), and (iv) in 21% (22/105) synchronous with release

(2/1). Case iii is readily explained because binding of

(Cy3-)ATP is expected to produce forward torque. Case

iv suggests that release of (Cy3-)ADP also produces for-

ward torque, which is reasonable as discussed below.
Case i is a combination of cases iii and iv in that Cy3-ATP

binding and Cy3-ADP release must have occurred in suc-

cession, in either order. Case ii is unexplained. Case iv, for-

ward bead displacements accompanying ADP release,

may appear at odds with the observation in the absence

of magnets where the occupancy change from 2 to 1 re-

sulted mostly in backward rotation (Figure 6E [f]). Our inter-

pretation is that, in the one-nucleotide state arrived at by

ADP release, the potential energy for g rotation has a local

maximum slightly ahead of the ATP-waiting angle: upon

ADP release, g is basically pulled backward by the a3b3

stator, but, if an external force or thermal fluctuation moves

g past the potential maximum, the stator pushes g forward.

Without an external force, g goes backward in most cases

but occasionally goes forward by the help of thermal fluc-

tuation. The magnets prohibit the backward motion and

force g to rotate forward, and then the a3b3 stator adds

an additional push.

DISCUSSION

The Coupling Scheme

The timings of Pi and ADP releases have been estab-

lished, and the 40� substep has been shown to be driven

by Pi release (Figure 1A). For ADP which remains bound

for �240�, the catalytic site that releases it is uniquely

identified as the one that has bound ATP 240� ago (Figures

1B or 1C). For phosphate, however, our study leaves two

Figure 7. Site Occupancy during Controlled Rotation

Time courses of the number of bound Cy3-nucleotide and rotation

under rotary magnetic field at 0.02 Hz in 150 nM Cy3-ATP (A) and at

0.01 Hz in 100 nM Cy3-ATP (B). Red curves, fluorescence intensity

in a spot (0.784 3 0.784 mm2), median-filtered over 32 video frames

(1.067 s). Pink horizontal lines, number of bound Cy3-nucleotides.

Blue lines, bead rotation. Gray horizontal lines, ATP-waiting angles.

Vertical dotted lines mark abrupt forward rotation of the beads that

occurred every �120�. The magnetic field was turned off for a while

at �82 s and 186 s in (A) and at �234 s in (B).
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possibilities: Pi cleaved from ATP is immediately released

(Figure 1B), or the release is suspended for another 120�

rotation (Figure 1C). The latter is in accord with a recent

crystal structure of yeast F1 in which phosphate is located

in the third, otherwise empty, catalytic site (Kabalees-

waran et al., 2006). The crystal, however, may have bound

medium sulfate. A difficulty in Figure 1C is how the leaving

phosphate senses its timing of release, which must be

synchronous with ATP cleavage in a different, remote cat-

alytic site; Pi release obligatorily follows ATP cleavage in

Figure 1B. Another is that, prior to Pi release, the affinity

for Pi is already low, with KPi
d ð80�Þ of 4.9 mM. Retaining

Pi for 120� rotation after hydrolysis, which takes many

seconds at low [ATP], may well pose a problem. These dif-

ficulties are highlighted in the b-E190D mutant, in which

cleavage is slow, taking �300 ms with unlabeled ATP

and �30 s with Cy3-ATP, but nevertheless phosphate te-

naciously waits for the cleavage to complete. A possibility

is that ATP cleavage and Pi release occur in parallel, in dif-

ferent sites, and g rotation is suspended until both have

taken place: Pi release may precede ATP cleavage. The

kinetics for this parallel scenario is not grossly different

from the sequential one. Our preference at this moment

is Figure 1B, mainly because it is simple and straightfor-

ward. Under conditions where F1 binds only one ATP

molecule (uni-site catalysis), Pi is released before ADP

(Masaike et al., 2002). In another motor protein myosin,

force-generating Pi release occurs before ADP release

(De La Cruz and Ostap, 2004).

The Pi release site aside, the scheme in Figure 1 shows

how the chemical reactions in the three sites drive partic-

ular phases of rotation, which we believe represents the

major reaction pathway of ATP-driven rotation at saturat-

ing, millimolar concentrations of ATP down to nanomolar.

In principle, ATP synthesis by forced, reverse rotation will

follow the same pathway in reverse. Synthesis is the phys-

iological function (in animals, plants and aerobic bacteria

including the thermophile) of F1-ATPase, which is part of

the ATP synthase in which the other part, a proton-driven

rotary motor Fo, drives the reverse rotation of F1 in cells

(Yoshida et al., 2001). Upon reverse rotation, phosphate

will be picked up from the intracellular environment at

�80�, but, there, KPi
d ð80�Þ is 4.9 mM, comparable to the

physiological [Pi]. Efficient synthesis would require a KPi
d

an order of magnitude smaller. Our answer is that the ac-

tual KPi
d is a steep function of the g angle q, increasing >104

fold over the narrow angular range of 80�–120�, whereas

the KPi
d ð80�Þ of 4.9 mM represents an effective value for

the two-conformation approximation in Figure 3A: in the

actual, fully q-dependent KPi
d ðqÞ, its value at 80� is presum-

ably below 1 mM, and thermal fluctuation of g toward 120�

will increase KPi
d to assist Pi release such that the effective

KPi
d is 4.9 mM. During synthesis, an external force pro-

duced by Fo or magnets rotates g in the reverse direction

until KPi
d is reduced to a submillimolar value to ensure bind-

ing of medium Pi.

Crystal structures of F1 solved by Walker group are all

similar to each other. Our fluorescence study (Yasuda
318 Cell 130, 309–321, July 27, 2007 ª2007 Elsevier Inc.
et al., 2003) has indicated that these should resemble

a 80�, not 0�, conformation. The original structure (Abra-

hams et al., 1994) was proposed to represent the

MgADP-inhibited state, where g has been shown to be

at �80� (Hirono-Hara et al., 2001). In all these crystals

but one, site occupancy is two, consistent with our

scheme that ADP is released between 240� and 320�. In

the structure with three sites filled (Menz et al., 2001), g

is twisted clockwise, possibly representing a state be-

tween 240� and 320�. In a two-nucleotide structure (Ka-

gawa et al., 2004), one catalytic site (on the bDP subunit

in their nomenclature) has been suggested to be the active

one, in that a water molecule that would carry out nucleo-

philic attack on the g-phosphate of ATP during hydrolysis

is better positioned than in the other filled site on the bTP

subunit. With the empty site as a reference, bDP corre-

sponds to our ADP$Pi and bTP to ATP in Figure 1B (or

1C) iv, in harmony with our reaction scheme.

At low [ATP] around mM where the overall hydrolysis

reaction is slow, or under the conditions where ATP syn-

thesis proceeds slowly, many cycles of ATP cleavage and

synthesis occur on F1 before the overall reaction proceeds

to a next round: synthesis/hydrolysis in the catalytic site is

fully reversible, or ATP and ADP$Pi are near equilibrium

(Boyer, 1993). In Figure 1C, this would take place in the

state ADP$Pi, if the equilibrium there allows occasional

synthesis. In Figure 1B, the ATP at the 120� position (red

in i’) may occasionally be converted to ADP$Pi for a short

moment. The latter is consistent with our recent observa-

tion (Shimabukuro et al., 2006) that, when an ATP-waiting

dwell is long, the red ATP in i’ is hydrolyzed before the cyan

ATP binds: if Pi happens to be released upon one of the

momentary cleavage events, ATP cannot be reformed

and ADP stays.

At yet lower [ATP], ADP is spontaneously released in an

ATP-waiting angle and g often goes back by 40�. The

backward rotation presumably diminishes the affinity for

ATP of the site that was to bind the next ATP. Thus, F1 can-

not easily resume the normal reaction pathway, unless

helped by magnets, and lingers on side paths. Overall,

however, the rotation still goes in the correct direction.

Energetics of Coupling

Our view of the coupling between chemical reactions and

mechanical work is continual induced fits (Koshland, 1958)

and induced ‘unfits.’ In the case of F1-ATPase, ATP binding

induces the catalytic site into a conformation that better fits

ATP, which in turn drives the first 80� conformational

change in the whole F1. After the conformational change,

the affinity for ATP should be higher because of the in-

duced fit. During synthesis, ATP that is synthesized but

tightly bound to the catalytic site will be released into the

medium when g is rotated in reverse (Yasuda et al., 2001).

Likewise, Pi release renders the site unfit for Pi, thereby

driving the second 40� conformational change of F1. Here

we have gone beyond the logic and have shown experi-

mentally that the 40� rotation indeed reduces the affinity

for Pi: Boyer’s binding change mechanism (Boyer, 1993)



has now been directly proved for this part. Energy-

requiring reverse rotation should increase the affinity for

Pi, a necessary step in synthesis.

The vertical difference of �6 kBT between the two ma-

genta bars in Figure 3A is the conformational (free) energy

that can be used to do work during 80�/120� rotation, or

the work required to let g rotate in reverse. This energy di-

agram also reveals how the coupling between chemical

reaction and mechanical rotation is ensured. Because for-

ward 80�/120� rotation is uphill in the F1$ADP$Pi state,

forward rotation necessarily accompanies Pi release: g

may thermally rotate forward in the F1$ADP$Pi state, but

it will come back unless Pi is released. In 120�/80� rota-

tion for synthesis, F1$ADP state (magenta) poses an uphill

that presumably rises more sharply beyond 80�. Unless Pi

is bound and the state changes to green, further backward

rotation will be prohibited.

ADP release likely accompanies induced unfit, too.

Spontaneous Cy3-ADP release at the ATP-waiting angle

of 240� takes �101 s, whereas release is complete in the

next 80� substep which takes < 33 ms. Forward rotation

must increase kCy3-ADP
off , as evidenced by the acceleration

by magnets. Unless kCy3-ADP
on increases by the same

amount, which is unlikely, the affinity for Cy3-ADP will de-

crease. Quantitative data on unlabeled ADP is yet unavail-

able, but it is likely that the affinity for ADP also decreases

in the substep from 240� to 320�. If so, it implies that 80�

substeps are powered by ADP release in addition to ATP

binding, as opposed to our original contention (Kinosita

et al., 2004; Yasuda et al., 2001) that ATP binding alone

drives the 80� step. The forward bead displacements si-

multaneous with Cy3-ADP release in Figure 7 support

the new view and further suggest, as already mentioned,

that forward torque produced by ADP release begins to

operate after g has rotated beyond the ATP-waiting angle,

normally after ATP binding has initiated the 80� rotation.

We have proposed that cleavage of ATP may also ac-

company a small amount of rotation, e.g., 10� (Kinosita

et al., 2004). Substep amplitudes close to 80� have been

observed in cases of slow ATP cleavage, leaving the

possibility that Pi release drives rotation from �90� to

120�; high-speed imaging (Figure 2) cannot reliably

discriminate 80� and 90�. Coupling between ATP cleavage

and rotation will ensure efficient synthesis, because

reverse rotation will drive the equilibrium between ATP

and ADP$Pi toward synthesis. See-saw energy diagrams

as in Figure 3A likely apply to all reactions, binding and

release of ATP, ADP, and Pi as well as cleavage/synthesis

of ATP. All will then accompany induced fits or unfits, pro-

viding basis for efficient coupling.

EXPERIMENTAL PROCEDURES

Proteins

F1 was biotinylated at the sole two cysteines on g (Yasuda et al., 2001),

and streptavidin conjugated (Yasuda et al., 1998). The b-E190D mutant

was purified and biotinylated as described (Shimabukuro et al., 2003).

The samples were flash-frozen in liquid nitrogen and stored at �80�C

until use.
Flow Chamber

We made two 6-mm wide flow chambers side by side on a 32 3

24 mm2 coverslip, functionalized with Ni-NTA (Itoh et al., 2004), by

placing three spacers �50-mm thick and an uncoated coverslip

(18 3 18 mm2) on top. We infused one chamber volume (�5 ml) of

40 pM biotinylated F1 in buffer A (25 mM MOPS-KOH, 50 mM KCl,

4 mM MgCl2, [pH 7.0]), waited for 2 min, and infused 20 ml of buffer

A and 20 ml of 5 mg/ml BSA in buffer A. We then infused 10 ml of strep-

tavidin-coated magnetic beads (MG-SA with very high biotin binding

capacity, nominal diameter 0.711 mm, Seradyn) from which particles

>�0.5 mm had been removed by centrifugation. After 30 min, we in-

fused 20 ml of buffer A, and then 20 ml of 2.5 mg/ml biotin-labeled

BSA (Sigma-Aldrich) to block the surface of magnetic beads. Finally,

we infused twice 20 ml of buffer B (buffer A with KCl at 25 mM, plus

1.25 mM creatine phosphate and 0.1 mg/ml creatine kinase) with

ATP at a desired level. When Cy3-ATP was included, we used buffer

B’ (buffer B plus 0.5% (v/v) 2-mercaptoethanol, 0.1 mg/ml glucose-

oxidase, 30 U/ml catalase, and 2.25 mg/ml glucose).

Samples for gold bead assay were prepared by the same procedure,

except that biotinylated F1, buffer A and magnetic beads above were

replaced with streptavidin-conjugated F1, buffer C (10 mM MOPS-

KOH, 100 mM KCl, [pH 7.0]) and biotinylated 40 nm gold beads (Ya-

suda et al., 2001), respectively, and infusion of biotin-labeled BSA

was omitted. Anions were added as potassium salt in buffer B.

Microscopy

Images of 40 nm gold particles were obtained by laser dark-field mi-

croscopy (Yasuda et al., 2001) on an inverted microscope (IX70, Olym-

pus) and recorded with a fast-framing charge-coupled device (CCD)

camera (HiD-Cam, Nac) at 8000 frames/s. 1-2 mW of 532 nm laser

beam (Millennia II, Spectra-Physics) was introduced in the dark-field

condenser to illuminate a sample area �10 mm in diameter.

Cy3-ATP was imaged by TIRF microscopy, where the 532 nm laser

beam was introduced from below through an objective (Figure 4A).

Ordinary TIRF excitation with a single laser beam lacks oscillation along

the beam and is unsuited to quantitative fluorescence. We thus illumi-

nated the sample from all directions (Figure 4A): after making the laser

beam circularly polarized with a quarter-wave plate, we let it diverge

in a cone-surface shape with a diffractive diffuser (D074A, MEMS

Optical), which was rotated at 7,000 rpm by a hollow shaft motor to

eliminate interference and speckles, and we focused the diverging

beam on the back focal plane of the objective (PlanApo 100 3 NA

1.4, Olympus; made magnetization-free by custom-order) in the

form of a ring at the numerical aperture of 1.365 (±1%). Laser power be-

fore the objective was 0.11 mW in Figure 4 and 0.05–0.07 mW else-

where, which illuminated a sample area �17 mm in diameter. Fluores-

cence was imaged with an intensified (VS4-1845, Videoscope) CCD

camera (CCD-300T-IFG, Dage-MTI). Images of magnetic beads, illumi-

nated with a halogen lamp, were separated from fluorescence by a

dichroic mirror and captured with another camera (CCD-300-RC,

Dage-MTI). Fluorescence and bead images were synchronously com-

bined (Multi Viewer MV-24C, FOR-A) and recorded on a Hi8 video

tape (EVO-9650, Sony). We analyzed digitized (Video Savant, IO Indus-

tries) images using ImageJ (NIH) and in-house plug-ins. Rotary angles

were determined from the centroid of bead images (Yasuda et al.,

2001).

To rotate magnetic beads, two opposing pairs of electromagnets

made of soft iron, each pole 10 mm wide and 10 mm high and the

gap between opposing poles of 20 mm, were mounted 18 mm above

the sample (Figure 4A). Magnetic field on the specimen was 40-

130 Gauss.

Observations were made at 23 ± 0.1�C.

Analysis of Phosphate Kinetics

We analyzed the histograms of 80� dwells (Figure 3B) as follows. At

2 mM ATP and 0 mM Pi, the 80� dwell consists of two reactions, ATP

hydrolysis and Pi release. Fit with a sequential reaction scheme (cyan
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line in Figure 3B) gave two rate constants, (8.6 ± 0.2) 3 103 s�1 and

(7.5 ± 0.1) 3 102 s�1, consistent with previous values (Yasuda et al.,

2001). In the presence of Pi, Scheme 6 in the main text applies, for

which the dwell-time distribution is given by
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(for kPi

off < kPi
rebind). Global fit

(magenta lines) to all histograms at 20 mM ATP at various [Pi] in

Figure 3B, with all parameters in common except for kPi
rebindð80�Þ,

gave the results in the main text (Origin software, Origin Lab). The

khydð80�Þ and kPi
offð80�Þ obtained in the global fit agree with the indepen-

dent analysis at 2mM ATP and 0 mM Pi above.

The analysis of 120� dwells was made as follows. The Scheme 7 in

the main text implies that the dwells at 120� terminated by a backward

40� substep (Pi rebinding) and those terminated by a 80� forward sub-

step (ATP binding) should both be distributed as

P
�
t
�
fexp{�

�
kPi;app

on ,½Pi�+ kATP
on ,½ATP�

�
t} (9)

where

kPi;app
on = kPi

onð120�Þ3 k�
�
F1,ADP,Pi

��
{k�
�
F1,ADP,Pi

�
+ kPi

offð120�Þ}
(10)

is the apparent rate of Pi binding (below saturating [Pi]) and kATP
on ð120�Þ

the apparent rate of ATP binding which we do not distinguish from the

true rate. Experimental histograms for the two sets of dwells were in-

deed exponential with a similar time constant (Figure 3D). We therefore

fitted the combined dwells (light gray) with exp(-kt) (green lines) to ob-

tain k = kPi;app
on ½Pi + kATP

on ½ATP�
�

. In Figure 3E we plot k/[Pi] versus [ATP]

(black symbols). The intercept at 0 mM ATP gives kPi;app
on = (4.4 ± 2.5) 3

101 M�1s�1. Plot of k/[ATP] versus [Pi] (black in Figure 3F) gives

kATP
on ð120�Þ = (1.7 ± 0.4) 3 107 M�1s�1. A caveat here is that the

substrate of F1-ATPase is MgATP (Weber et al., 1994) whereas Mg is

chelated by Pi. When we use corrected [MgATP] (gray symbols)

instead of added [ATP], we obtain

kPi;app
on = ð4:4 ± 2:5Þ3 101M�1s�1 (11)

and kATP
on ð120�Þ = (2.0 ± 0.3) 3 107 M�1s�1. These latter values do not

differ significantly from the values without correction, because kPi;app
on

and kATP
on ð120�Þ are estimated at the limit of [ATP]/0 and [Pi]/0,

respectively.

Putting KPi
d ð80�Þ = 4.9 mM and k + ðF1,ADPÞ/k�ðF1,ADPÞ= 450 into

Equation 5, we obtain

KPi
d ð120�Þ3 {k +

�
F1,ADP,Pi

��
k�
�
F1,ADP,Pi

�
} = 2:2 M (12)

Because the backward 40� substep was as fast as the forward sub-

step, we set

k�
�
F1,ADP,Pi

�
z104s�1 (13)

Further analysis to obtain parameter values in Equation 12 is split into

two alternative branches. (i) If k�ðF1,ADP,PiÞ< kPi
offð120�Þ, then Equa-

tion 10 becomes

kPi;app
on zk�ðF1,ADP,PiÞ=KPi

d ð120�Þ= 44 M�1s�1 (14)

where the numerical value is from Equation 11. Equation 12 then reads

k + ðF1,ADP,PiÞ z102 s�1. From Equation 12, then, we obtain

KPi
d ð120�Þz2 3 102 M. Since the assumption for this branch is

kPi
offð120�Þ > k�ðF1,ADP,PiÞz104 s�1 and since Equation 10 dictates

kPi
onð120�Þ> kPi;app

on , we make an arbitrary choice of kPi
offð120�Þ = 107 s�1

and kPi
onð120�Þ = 5 3 104 M�1s�1.
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(ii) If k�ðF1,ADP,PiÞ> kPi
offð120�Þ, then Equations 10 and 11 lead to

kPi;app
on zkPi

onð120�Þ= 44 M�1s�1 (15)

Putting Equations 13 and 15 into Equation 12, we obtain

kPi
offð120�Þ3 k +

�
F1,ADP,Pi

�
= 1 3 106 s�2 (16)

The rate of forward rotation without Pi release, k + ðF1,ADP,PiÞ, must

be < 103 s�1 because the 80� dwell is �2 ms, and the assumption

for branch (ii) is kPi
offð120�Þ< k�ðF1,ADP,PiÞz 104 s�1. The slim choice

that is left for Equation 16 is k + ðF1,ADP,PiÞz 3 3 102 s�1, kPi
offð120�Þ

z 3 3 103 s�1. With Equation 15, KPi
d ð120�Þz 70 M.

Calibrations

Fluorescence intensity of a single Cy3-ATP on F1 was determined in

a mixture of 100 nM Cy3-ATP and 200 nM unlabeled ATP, where at

most one Cy3-ATP would bind to F1 at any moments. From 32 binding

events in four F1 molecules during rotation without magnets, we ob-

tained an average intensity, above background, of 12.1 ± 0.3 arbitrary

unit (au), consistent with the quantized intensities in Figure 6D. The

background intensity varied with [Cy3-ATP], and is shown as ‘‘0’’ in

Figures 5–7. We also confirmed that we could resolve up to three

Cy3 molecules bound to F1. For this, we used b-F420C mutant that

has a cysteine residue on each b at the entrance of nucleotide binding

pocket. We moderately labeled it with Cy3-monofunctional maleimide.

Spot intensities of the labeled mutant had three major peaks at multi-

ples of 14.4 au, equivalent with 13.1 au of bound Cy3-ATP (calibration

in a fluorometer).

The rate of photobleaching of Cy3 was also measured on this

labeled mutant under conditions similar to Figures 5–7. The time to

photobleaching distributed exponentially with a time constant of

56 ± 7 s (n = 400). 6%–7% showed frequent blinking, once in several

seconds on average and lasting �1 s or less, and 1%–2% blinked

once or twice before photobleaching. The rest did not blink. The rea-

son for the heterogeneity is unknown. The case of frequent blinking

was less noticeable with Cy3-ATP.

Ionic strengths in Figures 2E and 2F were calculated as

1=2,
P
ðciz

2
i Þ, where ci is the concentration and zi charge number of

ith ion. Phosphate and succinate concentrations were estimated by

solving Henderson-Hasselbalch equation, pH = pK2 � logðg1=g2Þ+
logð½A2� =½HA1� Þ�

�
, where pH = 7.0 and for phosphate (Cohn, 1927),

pK2 = 7.16, log(g1/g2) = 0.35 (50 mM), 0.473 (200 mM), and

0.545 (500 mM); for succinate (Esteso et al., 1987), pK2 = 5.57 and

log(g1/g2) = 0.587 (50 mM), 0.4877 (200 mM), 0.4615 (500 mM).

Corrected [MgATP] in Figures 3E and 3F was calculated from

[MgATP] = KATP [ATP] [Mg] and [MgPi] = KPi [Pi] [Mg], where KATP

and KPi are 104.6 and 102.9 (Sillén and Martell, 1964); [Mg] = [added

Mg] – [MgATP] – [MgPi]; [ATP] = [added ATP] – [MgATP]; [Pi] = [added

Pi] – [MgPi].
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