Correlation between the conformational states of F₁-ATPase as determined from its crystal structure and single-molecule rotation

Daichi Okuno^a, Ryo Fujisawa^a, Ryota lino^a, Yoko Hirono-Hara^b, Hiromi Imamura^{a,c}, and Hiroyuki Noji^{a,1}

^aThe Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; ^bInstitute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505, Japan; and ^cPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Tokyo 102-0075, Japan

Edited by John E. Walker, Medical Research Council, Cambridge, United Kingdom, and approved November 6, 2008 (received for review June 18, 2008)

F1-ATPase is a rotary molecular motor driven by ATP hydrolysis that rotates the γ -subunit against the $\alpha_3\beta_3$ ring. The crystal structures of F1, which provide the structural basis for the catalysis mechanism, have shown essentially 1 stable conformational state. In contrast, single-molecule studies have revealed that F1 has 2 stable conformational states: ATP-binding dwell state and catalytic dwell state. Although structural and single-molecule studies are crucial for the understanding of the molecular mechanism of F1, it remains unclear as to which catalytic state the crystal structure represents. To address this issue, we introduced cysteine residues at βE391 and γ R84 of F₁ from thermophilic *Bacillus* PS3. In the crystal structures of the mitochondrial F₁, the corresponding residues in the ADPbound β (β_{DP}) and γ were in direct contact. The β E190D mutation was additionally introduced into the β to slow ATP hydrolysis. By incorporating a single copy of the mutant β -subunit, the chimera F₁, $\alpha_3\beta_2\beta$ (E190D/E391C) γ (R84C), was prepared. In single-molecule rotation assay, chimera F1 showed a catalytic dwell pause in every turn because of the slowed ATP hydrolysis of β (E190D/E391C). When the mutant β and γ were cross-linked through a disulfide bond between β E391C and γ R84C, F₁ paused the rotation at the catalytic dwell angle of β (E190D/E391C), indicating that the crystal structure represents the catalytic dwell state and that β_{DP} is the catalytically active form. The former point was again confirmed in experiments where F1 rotation was inhibited by adenosine-5'-(β , γ -imino)-triphosphate and/or azide, the most commonly used inhibitors for the crystallization of F1.

ATP synthase | cross-link

he F_oF₁-ATP synthase is widely found in biological membranes such as the mitochondrial inner membrane, thylakoid membrane, and bacterial plasma membrane. It catalyzes ATP synthesis from ADP and inorganic phosphate (Pi) at the cost of the electrochemical potential of proton or sodium ion across the membrane (1-6). The synthase is composed of a water-soluble part, F_1 , and a membrane-embedded part, F_0 . F_1 is a rotary motor driven by ATP hydrolysis. The subunit composition of bacterial F_1 is $\alpha_3\beta_3\gamma\delta\epsilon$. The minimum complex of the rotary motor is the $\alpha_3\beta_3\gamma$ subcomplex that is hereinafter referred to as $F_1^{\alpha\beta\gamma}$. Hydrolyzing ATP, F_1 rotates the γ -subunit against the $\alpha_3\beta_3$ stator ring in a counterclockwise direction when viewed from the F_0 (7). F_0 is also a rotary motor that is driven by proton translocation across the membrane, down the electrochemical potential (8, 9). The subunit composition of bacterial F_0 is ab_2c_{10-15} in which the c_{10-15} oligomer ring rotates against the ab₂ stator. These 2 rotary motors are connected through the central and peripheral stalks. Under ATP synthesis conditions where the proton electrochemical potential is dominant, F_0 forcibly rotates the γ -subunit of F₁ in the reverse direction (clockwise when viewed from F_0). This reverse rotation of F_1 results in the reverse chemical reaction of ATP hydrolysis, i.e., ATP synthesis. Conversely, under ATP hydrolysis conditions, F_1 rotates γ in the anticlockwise direction with the c_{10-15} ring, forcing F_0 to pump protons against the proton electrochemical potential.

The atomic-level structure of F₁ was first described in 1994, using a crystal of bovine mitochondrial F_1 (MF₁) prepared in the presence of ADP, adenosine-5'-(β , γ -imino)-triphosphate (AMP-PNP), and sodium azide (NaN3) (10). This structure, referred to as the "reference structure." revealed that 3 α -subunits and 3 β -subunits are alternately aligned to form a hetero hexamer ring and the γ -subunit is set into the central cavity of the $\alpha_3\beta_3$ ring. The catalytic sites are located at each $\alpha\beta$ interface, mainly on the β -subunit. Each β is in a different conformational state depending on the bound substrate; one binds to AMP-PNP (β_{TP}), another to ADP (β_{DP}), and the third to none (β_{empty}). Both β_{TP} and β_{DP} are in the closed conformation where the C-terminal domain swings toward the nucleotide-binding domain to close the cleft between these domains. As a result, these β -subunits wrap the bound nucleotide tightly. In contrast, β_{empty} adopts an open conformation to weaken the affinity to the nucleotide. These structural features agree well with the binding change mechanism (5), which assumes that each catalytic site is in a different catalytic state and the interconversion of catalytic states drives the rotary motion of the γ -subunit, although there are some inconsistencies (11). Since this work, many crystal structures of MF1 with different chemical inhibitors have been reported. The crystal structure that differs most from the reference structure is that which has ADP·AIF₄, where β_{empty} binds to ADP to adopt the half-closed conformation and the γ is twisted by -20° (12). However, all other MF₁ structures have very similar conformations to the reference structure. Thus, the crystal structures of MF1 essentially represent a certain stable conformational state of F_1 except for the ADP·AIF⁻₄-bound MF₁ structure.

In contrast, single-molecule studies on the γ rotation of F₁ have revealed that F₁ has 2 distinct stable conformations. Since the observation that F₁ performs a 120° step rotation of γ upon hydrolysis of 1 ATP, intensive attempts have been made to resolve the 120° step into multiple substeps to allow better understanding of how the elementary catalytic steps are coupled with the mechanical rotation. In many of these studies including this one, F₁^{aβγ} from thermophilic *Bacillus* PS3 (TF₁) have been used because TF₁ is stable under the harsh conditions of the single-molecule experiments and can be genetically modified. Thus far, 2 substeps have been found: the 80° and 40° substeps. High-speed imaging of the rotation (13) and a study of a mutant F₁ having a noticeably low ATP hydrolysis rate (14) revealed that the 80° substep is induced by ATP binding and that the 40° substep was initiated after hydrolysis

Author contributions: H.N. designed research; D.O., R.F., R.I., Y.H.-H., and H.I. performed research; D.O. and R.F. analyzed data; and D.O., R.I., and H.N. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission

Freely available online through the PNAS open access option.

¹To whom correspondence should be addressed. E-mail: hnoji@sanken.osaka-u.ac.jp .

This article contains supporting information online at www.pnas.org/cgi/content/full/ 0805828106/DCSupplemental.

^{© 2008} by The National Academy of Sciences of the USA

Fig. 1. Spatial positions of β E395 (light gray spheres) and γ R75 (dark gray spheres) of MF₁ in the crystal structure (Protein Data Bank ID code 1e79) (26). These residues correspond to β E391 and γ R84 of TF₁. The protruding part of the γ is the F₀ binding side. The α -subunit is shown in blue, the β -subunit is green, and the γ -subunit is red. To show the β E395 and γ R75 residues, R33, D74, D110, R113, R134, and P135 residues of the γ were removed. The figure was produced with Pymol.

of bound ATP. Hereinafter, the 2 conformational states before the 80° or 40° substeps are referred to as the "binding dwell state" and "catalytic dwell state," respectively. Recent studies have suggested that ADP release and P_i release occur at the binding dwell angle and catalytic dwell angle, respectively (15, 16). More recently, a temperature-sensitive reaction was found at the binding dwell angle in a rotation assay at low temperature (16).

Thus, single-molecule studies have revealed that F₁ has 2 stable conformational states, whereas F1 adopts essentially 1 specific stable conformation in the crystal structure. Which conformational state do the crystal structures of F1 represent, binding dwell state, catalytic dwell state, or another new state? On this issue, there are some interesting results. The analysis of fluorescence resonance energy transfer (FRET) between fluorescent probes attached to β and γ suggests that the crystal structure probably corresponds to the catalytic dwell state (17). However, FRET measurement provides the relative distance between the fluorophores, but not the precise position in the 3D structure. Therefore, this result is not conclusive. The reference structure was recently revised to show that β_{DP} binds to N_3^- at the γ -phosphate binding position (18), implying that F_1 in the crystal structure is in the azide-stabilized form, while the feature of this structure was later revealed to be almost consistent with that of the catalytic ground state MF_1 (19). Taking into account that F_1 pauses at the catalytic angle when in the ADP-inhibited form (20), it seems plausible that the crystal structure is in the catalytic dwell state. However, there are no experimental results that clarify this

Table 1. Distance between $\gamma\text{-}carbons$ of βE395 and γR75 in crystal structures of MF_1

Protein Data		Distance, Å		
Bank ID code	Ref.	β _{TP}	β_{DP}	eta_{empty}
1e79	26	11.2	6.1	25.1
1 h8e	12	11.1	6.0	17.8
1w0j	22	11.2	6.0	24.8
2ck3	18	10.8	5.7	ND
2jdi	19	11.0	5.8	ND
		11.0 ± 0.2*	5.9 ± 0.2*	22.6 ± 4.1*

ND, not determined because E395 in $\beta_{\rm empty}$ was not visible in these structures.

*Average \pm SD.

Fig. 2. The chimera $F_1^{\alpha\beta\gamma}$, $\alpha_3\beta_2\beta$ (E190D/E391C) γ (R84C). (A) Schematic image of the chimera $F_1^{\alpha\beta\gamma}$, $\alpha_3\beta_2\beta$ (E190D/E391C) γ (R84C) used in the cross-link experiment. Short black prongs denote cysteine residues at β E391 and γ R84 for disulfide bond formation. (*B*) Circular diagram of the reaction and rotation of the chimera $F_1^{\alpha\beta\gamma}$. At 0°, the mutated β , β (E190D/E391C), binds ATP (red dotted line) and makes the long catalytic dwell at 200° (blue dotted line) casued by slowed ATP hydrolysis by the β E190D mutation (29). The wild-type β -subunits bind ATP at 120° or 240° (black dotted lines). The catalytic dwells by the wild-type β -subunits at 80° or 320° were too short (only 1 ms) to detect with the present recording system (33 ms per frame) and are not shown.

point. In fact, a common view on the nature of crystal structure of the F_1 has not been established yet: some postulate it to be in the binding dwell state (21, 22) and others think it is the catalytic dwell state (23, 24).

With an aim to addressing this issue, we generated a mutant $F_1^{\alpha\beta\gamma}$ from Bacillus PS3 in which cysteine residues were introduced at β E391 and γ R84, respectively (25). In the crystal structures of bovine MF₁, corresponding residues in the ADP-bound β (β _{DP}) and the γ are in direct contact (18, 19, 22, 26). The residue of γ R84 is a part of the "ionic track" (25, 27), which is the distinctive zonation of positively-charged residues around the axis of γ . It is postulated that β bends and unbends its conformation, tracing the ionic track with the negative charges of β D394 and β E395 (for MF₁) so as to convert the bending motion of β into the rotary motion of γ (27). The importance of the ionic track is supported by the analysis of mutant $F_1^{\alpha\beta\gamma}$ in which β E391 and γ R84 are substituted with cysteine (25). Thus, the direct contact between β E391 and γ R84 is the representative $\beta_{DP} - \gamma$ interaction in the conformational state of the crystal structure. In this study, $F_1^{\alpha\beta\gamma}$ with β E391C and γ R84C mutations was investigated in a single-molecule rotation assay to observe where it pauses when the introduced cysteine residues form a disulfide bond, thereby fixing the motor in the conformational state corresponding to the conformational state of the crystal structures. In addition to the cross-link experiment, the correlation between the crystal structures and the single-molecule experiment was studied by investigating at which angle $F_1^{\alpha\beta\gamma}$ stops rotation in the

Fig. 3. β - γ cross-linking experiment in the single-molecule rotation assay. (*A*–*C*) The centroid traces of the rotation of a $\alpha_3\beta_2\beta(E190D/E391C)\gamma(R84C)$ molecule. Data are derived from 60-s recordings. (*A*) The rotation at 200 nM ATP with 3 binding dwells by all β -subunits and 1 catalytic dwell caused by the $\beta(E190D/E391C)$. (*B*) Pause of rotation after cross-linking by disulfide bond between β E391C and γ R84C. (*C*) Rotation resumed after the reduction of the disulfide bond. (Scale bars: 100 nm.) (*D*–*F*) Histograms of rotary angle of traces shown in *A*–*C*. The angular positions of the pauses were determined by fitting the data with Gaussian curves (orange, light blue, and yellow green lines in *D*, *E*, and *F*, respectively). Then, the angular distance of the cross-link pause (dashed line in *E*) from the binding dwell angle of β E391C ($\Delta\theta_2$) of the rotation before cross-link were determined. These distances were again determined by comparison with the rotation as $\Delta\theta_3$ and $\Delta\theta_4$. (*G* and *H*) Histograms of the angular distances ($\Delta\theta_1$ to $\Delta\theta_4$). n = 72 (36 molecules). The means \pm SD for $\Delta\theta_1$, $\Delta\theta_2$, $\Delta\theta_3$, and $\Delta\theta_4$ were determined by Gaussian curve fitting (red and blue lines) to be 82.7 \pm 15.9°, 2.0 \pm 11.0°, 81.3 \pm 17.0°, and 1.4 \pm 13.5°, respectively.

presence of AMP-PNP and/or NaN_3 , the most commonly used chemicals for the crystallization of F_1 .

Results

A Chimera $F_1^{\alpha\beta\gamma}$, $\alpha_3\beta_2\beta$ (E190D/E391C) γ (R84C). A mutant $F_1^{\alpha\beta\gamma}$ from Bacillus PS3 was prepared in which cysteine residues were introduced at β E391 and γ R84, which correspond to the β E395 and γ R75 of bovine MF₁, respectively. In the crystal structure of bovine MF₁, these 2 residues are in direct contact (Fig. 1). Although the whole structure of TF1 has not been solved, it is most likely that TF1 structure is very similar to MF₁, and that β E391 and γ R84 of TF₁ are also in a very close proximity when TF1 takes the conformational state corresponding to the crystal structure of MF₁. This is because F₁ from other species shows structural features essentially identical to that of MF1 even if the amino acid sequence is not highly homologous to that of MF₁, as seen in the γ subunit of F₁ from *Escherichia coli* (EF₁): The structure of the γ of EF₁ is very similar to that of MF₁ (28) although the sequence homology against the γ of MF₁ is low (only $\approx 30\%$) the same as the γ of TF₁. Furthermore, the sequences around β E391 and γ R84 are highly conserved in many species, suggesting the high structural conservation of these regions (Figs. S1 and S2). When β E391 and γ R84 of $F_1^{\alpha\beta\gamma}$ from Bacillus PS3 were replaced with cysteine residues, they efficiently $(\approx 90\%)$ formed a disulfide bond under oxidizing conditions within only a few minutes (25). Thus, it is reasonable to assume that TF_1 has the essentially identical structural features to MF_1 . In the MF_1 crystal structure, the β that has direct contact with $\gamma R75$ adopts the $\beta_{\rm DP}$ form. The γ -carbons of these residues that are in equivalent positions to the sulfur atoms of cysteine residue are only 5.9 Å away (Table 1), which is sufficiently close for disulfide bond formation. In contrast, the distances in the β_{TP} or β_{empty} pairs are 11 and 23 Å, respectively. Thus, the disulfide bond would be formed in the $\beta_{DP}-\gamma$ pair. In the single-molecule rotation assay, γ was actually cross-linked to β only when the β was in a specific catalytic state, revealed to be the catalytic dwell state (see below). Furthermore, E190D mutation was introduced to the β -subunit in addition to E391C mutation. The mutant β (E190D/E391C)* was reconstituted with the wild-type β to build a chimera $F_1^{\alpha\beta\gamma}$, $\alpha_3\beta_2\beta$ (E190D/ E391C) γ (R84C), which has a single copy of β (E190D/E391C) (Fig. 2A). Here, the β E190D mutation was used as an angular position marker to determine the pause angle of cross-linked $F_1^{\alpha\beta\gamma}$. Shimabukuro *et al.* (14) showed that the β E190D mutation severely slows the hydrolysis step and causes the long pause ($\tau = 320$ ms) at the catalytic angle. When a single copy of β with E190D mutation is incorporated in $F_1^{\alpha\beta\gamma}$, the reconstituted chimera $F_1^{\alpha\beta\gamma}$ exhibits a transient pause at the catalytic dwell angle of β E190D that is +200° from the angle at which the β E190D subunit binds to ATP (Fig. 2B) (29). Thus, a chimera $F_1^{\alpha\beta\gamma}$ with a single β (E190D) enables us to determine the pause angle of the cross-linked $F_1^{\alpha\beta\gamma}$ relative to the catalytic angle of β (E190D). It should be noted that a chimera $F_1^{\alpha\beta\gamma}$ with 1 β (E190D) was reported to exhibit another short pause at +120° from the catalytic dwell angle of β (E190D) (29). In this

^{*}The designation subunit name (mutation name) indicates the subunit with the indicated mutations. The designation without parentheses indicates a mutation.

Fig. 4. Manipulation of cross-linked $F_1^{\beta\gamma}$ with the magnetic tweezers. (*A*) Time course of the manipulation. Blue dots represent the period for the manipulation. The molecule was clamped at the indicated angle for 3 s in the forward direction and released. (*B–D*) $F_1^{\alpha\beta\gamma}$ was rotated at the rate of 36° per s for near or >120° in both directions. When twisted in the backward direction, $F_1^{\beta\gamma}$ showed irregular responses. Some resisted the external magnetic field, inversed the magnetic moment of the beads instantaneously (at the point indicated by * in *B* and *D*), and then rotated back to the inversed angle of the original magnetic field (*B* and *D*), or some paused at irregular positions (indicated by a mark in *C*) after being released from the field.

study, the short pause is neglected because the time constant of the short pause is too short ($\tau \approx 15$ ms) for the recording rate in this study (33 ms per frame).

Pausing Position of the Cross-Linked $F_1^{\alpha\beta\gamma}$. The rotation assay of $\alpha_3\beta_2\beta$ (E190D/E391C) γ (R84C) was carried out under a substratelimiting condition, at 200 nM ATP. Because the other kinds of chimera $F_1^{\alpha\beta\gamma}$, which carry 2, 3, or 0 of β (E190D/E391C) contaminated in the rotation assay, $\alpha_3\beta_2\beta(E190D/E391C)\gamma(R84C)$ was identified based on 2 criteria. (i) The existence of obvious pauses in every turn at the 3 binding angles, 120° apart from each other. (*ii*) The existence of the clear pause in every turn at a catalytic angle, which divides 1 of 3 120° steps into the 80° and 40° substeps in this order (not 40° and 80° substeps) (Fig. 3A and C) (29). In the selection based on the first criterion, >95% of molecules were omitted from the further analysis because of ambiguous stepping. Among selected molecules, 50% showed the clear pausing at a catalytic angle and were identified as the chimera, $\alpha_3\beta_2\beta$ (E190D/ E391C) γ (R84C). The remaining were mostly $\alpha_3\beta_3\gamma$ (R84C), of which all β -subunits were wild type, because the other chimera $F_1^{\alpha\beta\gamma}$ molecules carrying 2 or 3 mutant β -subunits were difficult to find out because of their slow rotary motion and the reconstitution efficiency of the mutant β was lower than that of the wild type as reported (29). Fig. 3 A-F shows a single dataset of the cross-link experiment. First, the free rotation of a $\alpha_3\beta_2\beta$ (E190D/ E391C) γ (R84C) molecule was observed to determine the angular position of the catalytic dwell of β (E190D/E391C) and the 3 binding dwell angles (Fig. 3 A and D). Then, an oxidizing buffer containing 3-carboxy-4-nitrophenyl disulfide (DTNB) was injected to the flow chamber to promote a disulfide bond formation between β E391C and $\gamma R84C$. After the buffer exchange, which took several minutes, a significant fraction of the molecules (\approx 70%) stopped rotation

Fig. 5. Pausing position of $F_1^{\alpha\beta\gamma}$ stalled by chemical inhibitors. (*A*) Histogram of the angular position from a single experimental dataset of the AMP-PNP inhibition experiment. After observing active rotation of a molecule at 60 nM ATP, 1 μ M AMP-PNP was infused into the reaction chamber with 60 nM ATP to stop the rotation. Red bars represent the angular position of free rotation; blue bars represent AMP-PNP inhibition (*B*) Histogram of the angular deviation of the position of AMP-PNP inhibition from the binding dwell angle on the clockwise side ($\Delta\theta$ in *A*). The mean was 84.2 ± 16.3°. *n* = 107 (15 molecules). (*C* and *D*) The angular position of azide (N_3^-) inhibition. The rotation was inhibited by infusing 1 mM NaN₃ with 200 μ M ATP. The mean value of $\Delta\theta$ was 80.9 ± 16.3°. *n* = 129 (29 molecules). (*E* and *F*) The angular position when inhibited by 200 μ M AMP-PNP, 5 μ M ADP, and 1 mM NaN₃. The mean value of $\Delta\theta$ was 80.2 ± 14.5°. *n* = 54 (9 molecules).

(Fig. 3 B and E). The remaining would be molecules in which cysteine residue was modified with a biotin that blocks the disulfide bond formation. After observing a pause, a pausing $F_1^{\alpha\beta\gamma}$ molecule was manipulated with magnetic tweezers to confirm the β - γ cross-linkage (Fig. 4). Unlike ADP-inhibited $F_1^{\alpha\beta\gamma}$, cross-linked $F_1^{\alpha\beta\gamma}$ never resumes rotation, even when forcibly rotated more than $+80^{\circ}$, which is sufficient to reactivate ADP-inhibited $F_1^{\alpha\beta\gamma}$ with nearly 100% efficiency (Fig. 4A) (30). Instead, cross-linked $F_1^{\alpha\beta\gamma}$ behaved as a twisted spring: when forcibly rotated and released, it just returned to the original pausing position. The angular velocity of return was always very fast (3.8 revolutions per s) and comparable with the ATP-driven rotation velocity at high ATP concentration (\approx 5 revolutions per s). In rare cases, $F_1^{\alpha\beta\gamma}$ exhibited irregular behaviors such as large fluctuations at an irregular position (Fig. 4 *B–D*). Such irregular behaviors were observed in some cases where cross-linked $F_1^{\alpha\beta\gamma}$ was rotated more than $\pm 120^\circ$ with the magnetic tweezers. This phenomenon is probably caused by the partial unfolding of the γ - or β -subunits. When the buffer was exchanged

Fig. 6. The proposed reaction scheme of F_1 and correlation with the crystal structure. State A represents the binding dwell state. After ATP binding and ADP release, F_1 makes an 80° substep. Thereafter, F_1 hydrolyzes the tightly bound ATP (denoted by *) in the state transition from B to C. These states correspond to the crystal structure of F_1 . After releasing P_i , F_1 makes a 40° substep to complete a cycle of ATP hydrolysis reaction coupled with 120° rotation. State D is the next binding dwell state.

with a reducing one, the disulfide bond was cleaved and $F_1^{\alpha\beta\gamma}$ molecules resumed active rotation (Fig. 3 C and F). Molecules that did not resume rotation or significantly changed their binding dwell angles were omitted from our data analysis. The angle differences of the cross-link angle (Fig. 3E) from the nearest binding angle on the clockwise side ($\Delta \theta_1$ in Fig. 3D) or the catalytic angle of β (E190D/E391C) ($\Delta \theta_2$ in Fig. 3D) were determined. These values were also determined by the comparison with the binding and catalytic dwell angles after reduction ($\Delta \theta_3$ and $\Delta \theta_4$ in Fig. 3F). For this analysis, the set of the experiments was repeated a total of 72 times with 36 molecules. The histograms of $\Delta \theta_1$ and $\Delta \theta_2$ showed a single peak and gave mean values of 82.7 \pm 15.9° for $\Delta \theta_1$ and 2.0 \pm 11.0° for $\Delta \theta_2$ (Fig. 3G). The histograms of $\Delta \theta_3$ and $\Delta \theta_4$ also gave essentially the same values, $81.3 \pm 17.0^{\circ}$ for $\Delta \theta_3$ and $1.4 \pm 13.5^{\circ}$ for $\Delta \theta_4$, showing the reproducibility of the experiment (Fig. 3*H*). These results show that the cross-linked $F_1^{\alpha\beta\gamma}$ pauses at the catalytic dwell angle of β (E190D/E391C). This means that the reference structure of MF₁ represents the conformational state of F_1 in the catalytic dwell state, and that β_{DP} conformation represents the catalytically active state that executes ATP hydrolysis. Considering that the standard deviations are much smaller than the magnitude of the 40° substep, cross-linked $F_1^{\alpha\beta\gamma}$ will not be stable at the binding angle.

Other chimera $F_1^{\alpha\beta\gamma}$ molecules, $\alpha_3\beta(E190D)_2\beta(E391C)\gamma(R84C)$ and $\alpha_3\beta(E190D)\beta(E391C)_{2\gamma}(R84C)$, were also examined to confirm that $\gamma R84C$ can form a disulfide bond with $\beta E391C$, which does not have the $\beta E190D$ mutation. The rotation of $\alpha_3\beta(E190D)_2\beta(E391C)\gamma(R84C)$ was rarely seen because of the low reconstitution efficiency of $\beta(E190D)$ as described above. The cross-linked chimera paused at either of the 2 catalytic angles that did not correspond to the catalytic angle of $\beta E190D$ (Fig. S3). Thus, it was verified that $\beta E190D$ mutation does not affect the pause position of cross-linked $F_1^{\alpha\beta\gamma}$.

Pause Angle of F_1^{\alpha\beta\gamma} Inhibited by AMP-PNP or N₃⁻. To crystallize F_1 , chemical inhibitors are often used to stabilize it in a specific conformational state. Another complementary method to correlate the crystal structure of F_1 and the substeps found in the single-molecule rotation assay is to analyze the pausing angle of $F_1^{\alpha\beta\gamma}$ inhibited by these inhibitors in the rotation assay. AMP-PNP and N₃⁻ are the chemical inhibitors most often used for the crystallization of F_1 . Therefore, AMP-PNP and N₃⁻ were used to stop the rotation of $F_1^{\alpha\beta\gamma}$ in this experiment (Fig. 5). As in the cross-linking experiment, the 120° stepping rotation of a wild-type $F_1^{\alpha\beta\gamma}$ molecule was first observed under substrate-limiting conditions (60 nM ATP) to determine the 3 binding dwell angles. Then,

the buffer containing an inhibitor (1 μ M AMP-PNP or 1 mM NaN₃) was introduced into the flow chamber with 60 nM ATP for the AMP-PNP inhibition or 200 μ M ATP for N₃⁻ inhibition. When the motor exhibited a long pause (>3 min), it was verified that the pause was not caused by ADP inhibition by forcibly rotating the motor through $+80^{\circ}$ with the magnetic tweezers; when inhibited by AMP-PNP or N_3^- , $F_1^{\alpha\beta\gamma}$ was never activated by this manipulation. However, when AMP-PNP- or N_3^- -inhibited $F_1^{\alpha\beta\gamma}$ was forcibly rotated well over +80°, for example +180°, some molecules resumed rotation and stopped after a few turns. Such harsh manipulation would repel the tightly bound AMP-PNP- or N₃⁻-ADP from $F_1^{\alpha\beta\gamma}$. After determining the pause position of inhibited $F_1^{\alpha\beta\gamma}$, the buffer was replaced with the inhibitor-free ATP buffer to confirm the molecule was still active by observing the resumption of ATP-driven rotation. Fig. 5A shows the pause position under AMP-PNP inhibition. The red bars represent the angle distribution during the 120° stepping rotation, and blue bars represent the angle distribution when inhibited by the inhibitor mixture. The angular distance ($\Delta \theta$) of the AMP-PNP pause from the nearest binding angle on the clockwise side was determined (Fig. 5B) as in the above cross-link experiment. The mean angular distance was $84.2^{\circ} \pm 16.3^{\circ}$. This position corresponds to the catalytic dwell angle, consistent with the results of the cross-link experiment. The same result was obtained in the N_3^- inhibition experiments, and the mean angular distance of $81.9^{\circ} \pm 16.3^{\circ}$ was obtained (Fig. 5 C and D). The pause angle of $F_1^{\alpha\beta\gamma}$ inhibited by 200 μ M AMP-PNP, 5 μ M ADP, and 1 mM NaN₃, which mimics the crystallization buffer of the reference structure, was also examined. The mean angular distance was 80.2° \pm 14.5° (Fig. 5 E and F), essentially the same as the above experiments. Thus, many lines of experiments confirmed that the crystal structure of F_1 represents the catalytic dwell state found in the rotation assay.

Discussion

The crystal structure of F_1 was experimentally shown to represent the conformation of the catalytic dwell state found in singlemolecule rotation assay. This means each β -subunit is in the β_{TP} , β_{DP} , or β_{empty} conformations during the catalytic dwell state. The β - γ cross-link using a chimera $F_1^{\alpha\beta\gamma}$ carrying 1 copy of β (E190D/ E391C) showed that the catalytic angle of β (E190D/E391C) coincides with the pause position of $F_1^{\alpha\beta\gamma}$ where β_{DP} is cross-linked with γ . This finding means that the β_{DP} corresponds to the conformational state of the β that executes ATP hydrolysis reaction, consistent with theoretical works on quantum mechanics and molecular mechanics (31) or free-energy difference simulations (32). The crystal structure of Be F_3^- - F_1 , which is thought to mimic the catalytic intermediate state, also supports this result (22).

Fig. 6 shows the present reaction scheme of F_1 , in which there are 2 chemical states during the catalytic dwell: prehydrolysis (state B) and posthydrolysis states (state C). Both states have the corresponding crystal structures. The recently reported structures (19, 33), the so-called "ground state" structures, in which both β_{TP} and β_{DP} bind with AMP-PNP correspond to the prehydrolysis state. However, the ADP·AlF₃-bound structure (34) would represent the posthydrolysis state. The azide-bound structures (10, 18) would also correspond to this state. Considering that β_{DP} represents the state that hydrolyses ATP, β_{DP} corresponds to the β before and after executing hydrolysis (the β at the right bottom in states B and C). Consequently, β_{TP} conformation represents the ATP-bound state that was the ATP-waiting state in the prior binding dwell sate (state A in Fig. 6), and β_{empty} corresponds to the state after ADP release.

Thus, this study established the correlation between the conformational states of F_1 found in the crystal structures and the single-molecule rotation assay. However, there is one uncertain point in the reaction scheme, the timing of P_i release. The present model assumes that β_{empty} is the P_i-bound state, and after β_{empty} releases P_i , the 40° substep is triggered (state C to state D). This assumption is based on the recent study of the crystal structure of yeast MF₁ (33) in which P_i binds to β_{empty} . The P_i-binding residues in the structure are consistent with those that biochemical studies have identified as the P_i binding site (35), supporting our reaction model. However, considering the other crystal structures that do not show an obvious electron density of Pi in the putative Pi-binding site, an alternative model is still possible; P_i is released from the β_{DP} immediately after hydrolysis. A clarification of this issue is the next challenging task in the study of the mechanochemical-coupling mechanism of F₁-ATPase.

Another issue is the structure of the binding dwell state. Although the ADP·AIF₄-bound MF₁ shows obvious structural differences, the direction of the twist in the γ is opposite to our expectations. Therefore, $ADP \cdot AlF_4^-$ -bound MF_1 is not in the binding dwell state. Rather, it might represent the intermediate state between state A and B of our reaction scheme in Fig. 6. Thus, there are no structural data about the binding dwell state. Because it is crucial for the understanding of the mechanochemical coupling mechanism of F₁, a crystallographic study of F₁ in the binding dwell state is one of the most important tasks for the understanding of the mechanism of F_1 -ATPase. However, the fact that the crystal structures identified so far are comparable with the reference structure implies that the crystallization of F₁ in the binding dwell state is very difficult. One possible way is to crystallize F_1 at low temperature (16) or F_1 inhibited by tentoxin (36), where it spends most of the catalytic turnover time pausing at the binding dwell angle.

Materials and Methods

Preparation of F₁^{$\alpha\beta\gamma$}. Throughout this work, $\alpha_3\beta_3\gamma$ subcomplex of F₁-ATPase from thermophilic Bacillus PS3 (TF1) was used. For inhibition by AMP-PNP or N3, wild-type $F_1^{\alpha\beta\gamma}$ modified for the rotation assay α (His₆ at N terminus/C193S)₃ β (His₁₀ at N terminus)₃ γ (S108C/I211C) was used. For simplicity, this F₁^{$\alpha\beta\gamma$} was referred to as wild-type $F_1^{\alpha\beta\gamma}$ or $\alpha_3\beta_3\gamma$. For the β - γ cross-link experiment, cysteine residues were

- 1. Cross RL (2000) The rotary binding change mechanism of ATP synthases. Biochim Biophys Acta 1458:270-275
- 2. Dimroth P, von Ballmoos C, Meier T (2006) Catalytic and mechanical cycles in F-ATP synthases: Fourth in the Cycles Review Series. EMBO Rep 7:276-282.
- Senior AE (2007) ATP synthase: Motoring to the finish line. Cell 130:220-221 4. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase: A marvelous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677.
- Boyer PD (1997) The ATP synthase: A splendid molecular machine. Annu Rev Biochem 5. 66.717-749
- 6. Oster G, Wang H (2000) Reverse engineering a protein: The mechanochemistry of ATP synthase. Biochim Biophys Acta 1458:482–510
- 7 Noji H, Yasuda R, Yoshida M, Kinosita K, Jr (1997) Direct observation of the rotation of F1-ATPase. *Nature* 386:299–302.
- 8. Diez M, et al. (2004) Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11:135–141
- Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA (2001) Rotation of the c-subunit oligomer
- in fully functional F1Fo ATP synthase. *Proc Natl Acad Sci USA* 98:898–902. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8-Å resolution of F1-ATPase from bovine heart mitochondria. *Nature* 370:621–628. 10.
- 11. Weber J, Senior AE (1997) Catalytic mechanism of F1-ATPase. Biochim Biophys Acta 1319:19-58.
- 12. Menz RI, Walker JE, Leslie AG (2001) Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: Implications for the mechanism of rotary catalysis. Cell 106:331-341.
- 13. Yasuda R. Noii H. Yoshida M. Kinosita K. Jr. Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904
- 14. Shimabukuro K, et al. (2003) Catalysis and rotation of F1 motor: Cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc Natl Acad Sci USA 100:14731-14736
- Adachi K, et al. (2007) Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. *Cell* 130:309–321.
 Watanabe R, lino R, Shimabukuro K, Yoshida M, Noji H (2008) Temperature-sensitive
- reaction intermediate of F1-ATPase. EMBO Rep 9:84-90.
- 17. Yasuda R, et al. (2003) The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100:9314-9318.
- Bowler MW, Montgomery MG, Leslie AG, Walker JE (2006) How azide inhibits ATP 18 hydrolysis by the F-ATPases. Proc Natl Acad Sci USA 103:8646-8649.
- Bowler MW, Montgomery MG, Leslie AG, Walker JE (2007) Ground-state structure of 19. F1-ATPase from bovine heart mitochondria at 1.9-Å resolution. J Biol Chem 282:14238-14242.

introduced into γ R84 and/or β E391 of wild-type F₁^{$\alpha\beta\gamma$} and $\alpha_{3}\beta$ (E190D)₃ γ (14) to construct 4 mutants: $\alpha_3\beta_3\gamma$ (R84C), $\alpha_3\beta$ (E190D)₃ γ (R84C), $\alpha_3\beta$ (E391C)₃ γ (R84C), and $\alpha_{3}\beta$ (E190D/E391C)₃ γ (R84C). Mutagenesis to construct the expression vectors of these mutants was performed as per the previous report on β - γ cross-linking (25). The mutants of $F_1^{\alpha\beta\gamma}$ were expressed in *E. coli*, purified, and biotinylated as reported (37). For the reconstitution of the chimera, $\alpha_3\beta_2\beta$ (E190D/E391C) γ (R84C), solutions of $\alpha_3\beta_3\gamma$ (R84C) and $\alpha_3\beta$ (E190D/E391C)₃ γ (R84C) were mixed in a molar ratio of 2:1 and incubated for >2 days in the presence of 200 mM NaCl and 100 mM DTT at 4 °C and pH 7.0. The chimera $\alpha_{3\beta}$ (E190D)₂ β (E391C) γ (R84C) was prepared by mixing solutions of $\alpha_{3\beta}(E190D)_{3\gamma}(R84C)$ and $\alpha_{3\beta}(E391C)_{3\gamma}(R84C)$ in a molar ratio of 2:1.

Rotation Assay. The rotary motion of $F_1^{\alpha\beta\gamma}$ was visualized by attaching a magnetic bead (<0.2 μ m; Seradyn) onto the γ -subunit of F₁^{$\alpha\beta\gamma$} and immobilizing the $\alpha_3\beta_3$ ring on a Ni-NTA-modified glass surface. Phase-contrast images of the rotating bead were obtained with an inverted optical microscope (IX-70; Olympus) equipped with magnetic tweezers (30). The image was captured with a CCD camera (FC300M; Takenaka) and recorded with a DV-CAM (DSR-11; Sony) at 30 fps. The recorded images were analyzed with image analysis software (Celery; Library) or a custom-made program (K. Adachi, Waseda University). The experimental procedures of the rotation assay for β - γ cross-linking were mostly the same as those reported (16), except for the content of the buffer. The basal buffer for the rotation assay contained 50 mM Hepes-KOH at pH 8.0, 50 mM KCl, 2 mM MgCl₂, 1 mM phospho(enol)pyrubate, 0.1 mg/ml pyrubate kinase, 5 mg/ml BSA. and 1 mM DTT. For β - γ cross-linking, 200 μ M DTNB was added to the basal buffer, from which DTT and BSA were omitted. The rotation assay for AMP-PNP and/or NaN3 inhibition was carried out in the buffer containing 50 mM Mops-KOH at pH 7.0, 50 mM KCl, 2 mM MgCl_2, 5 mg/ml BSA, and the indicated amount of nucleotides and NaN₃.

ACKNOWLEDGMENTS. We thank R. Hasegawa and Y. Iko-Tabata for technical assistance, W. Allison (University of California, San Diego) for plasmid vectors of mutant TF₁^{$\alpha\beta\gamma$} from *Bacillus* PS3, M. Yoshida for discussion, and K. Adachi for the custom image analysis program. This work was partly supported by Grant-in-Aid for Scientific Research 18074005 (to H.N.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

- 20. Hirono-Hara Y, et al. (2001) Pause and rotation of F(1)-ATPase during catalysis. Proc Natl Acad Sci USA 98:13649-13654
- 21. Gao YQ, Yang W, Karplus M (2005) A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123:195-205.
- 22. Kagawa R, Montgomery MG, Braig K, Leslie AG, Walker JE (2004) The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J 23:2734-2744.
- 23. Koga N, Takada S (2006) Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proc Natl Acad Sci USA 103:5367-5372.
- 24. Sun SX, Wang H, Oster G (2004) Asymmetry in the F1-ATPase and its implications for the rotational cycle. Biophys J 86:1373-1384.
- 25. Bandyopadhyay S, Allison WS (2004) The ionic track in the F1-ATPase from the thermophilic Bacillus PS3. Biochemistry 43:2533-2540.
- 26. Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F(1)-ATPase at 2.4-Å resolution. Nat Struct Biol 7:1055–1061.
- 27. Ma J, et al. (2002) A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. Structure (London) 10:921-931.
- 28. Rodgers AJ, Wilce MC (2000) Structure of the gamma-epsilon complex of ATP synthase. Nat Struct Biol 7:1051-1054
- 29. Ariga T, Muneyuki E, Yoshida M (2007) F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat Struct Mol Biol 14:841-846.
- 30. Hirono-Hara Y, Ishizuka K, Kinosita K, Jr, Yoshida M, Noji H (2005) Activation of pausing F1 motor by external force. Proc Natl Acad Sci USA 102:4288-4293
- 31. Dittrich M, Hayashi S, Schulten K (2004) ATP hydrolysis in the β TP and β DP catalytic sites of F1-ATPase. Biophys J 87:2954-2967.
- 32. Yang W, Gao YQ, Cui Q, Ma J, Karplus M (2003) The missing link between thermodynamics and structure in F1-ATPase. Proc Natl Acad Sci USA 100:874-879.
- 33. Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM (2006) Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J 25:5433-5442
- 34. Braig K, Menz RI, Montgomery MG, Leslie AG, Walker JE (2000) Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure (London) 8:567-573.
- 35. Ahmad Z, Senior AE (2005) Identification of phosphate binding residues of Escherichia coli ATP synthase. J Bionenerg Biomembr 37:437-440.
- 36. Meiss E, Konno H, Groth G, Hisabori T (2008) Molecular processes of inhibition and stimulation of ATP synthase caused by the phytotoxin tentoxin. J Biol Chem 283:24594-24599.
- 37. Rondelez Y, et al. (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773-777.

BIOPHYSICS

Supporting Information

Okuno et al. 10.1073/pnas.0805828106

β subunit

PNAS PNAS

MFI beta PPPRKAGATIGNI VAVI GAVDVE FOGE LEPI LANE VERGETER		* *.* .*** **** * *** .** ******	
MF1beta Investigation Investinvestigation Investigation<	MF1beta yF1beta EF1beta TF1beta	SPSPKAGATTGRI VAVI GAVVDVGFDEG-LPPI LNALEVOGRETR LVLEVACHLGESTVRTI ANDSTEGLVRG ASAAQSTPI TGKVTAVI GAI VDVHFEQSELPAI LNALEI KTPOGK LVLEVACHLGENTVRTI ANDGTEGLVRG NATGKI VQVI GAVVDVEFPQDAVPRVYDALEVQNGNER LVLEVQQLGGGI VRTI ANGSSDGLRRG MIGRVI QVNGPVVDVKFENGHLPAI YNALKI QHKARNENEVDI DLTLEVALHLGDDTVRTI ANASTDGLI RG 	80 80 80 80
MPT Deta EVULDAGENT, NJ, VARELLABI, MINJ GET, DERGET, K.C.M.F. AND MARKE FLYONGERG, LUTIG, K.VVLLAF, MARGEN 100 EFIbeta EVULDAGENT, NJ, VARELLABI, MINJ GET, DERGET, K.C.M.F. AND MARKE FLYONGERG, LUTIG, K.VVLLAF, MARGEN 100 EFIbeta EVVLDAGENT, NJ, VARELLABI, MINJ GET, DERGET, K.C.M.F. AND MARKE FLYONSOCLLATER, NJ DLAC, PLAKKGGK 100 MVID DEAM SUPPORT EGV DAGET, S.C.M.F. AND MARDEL FLYONKAGET, GETER, WJ, HAAPPYTEL, AND CLLATER, NJ DLAC, PLAKKGGK 100 MVID DEAM SUPPORT EVVLDTGGT, MARGEN FLYONKAGET, GETER, MARGEN FLYONKAGET, GETER, MJ DLAG, MARDEL FLYONKAGET, GETER, MJ JAN, MARDEL FLYONKAGET, GETER, MJ JAN, MARGET, MARGEN, MARGET, GETER, MJ JAN, MARGET, MA	ME1b ata		160
MF1beta YF1beta I.GLFGGAGVGKTULI MELLINIVAKAHGGYSVFAGVGERTBEGNDLYHEM ESGVI NLKDATSKVALVYGGMEPPGARAF 240 MF1beta I.GLFGGAGVGKTULI MELLINIVAKAHGGYSVFAGVGERTBEGNDLYHEM ESGVI NLKDATSKVALVYGGMEPPGARAF 240 VGLFGGAGVGKTULI VELLINIVAKAHGGYSVFAGVGERTBEGNDLYHEM ESGVI NLKDATSKVALVYGGMEPPGARAF 240 VGLFGGAGVGKTULI VELLINIVAKAHGYSVFAGVGERTBEGNDLYHEM ESGVI NLKDATSKVALVYGGMEPPGARAF 240 VGLFGGAGVGKTULI ELINIVAKAHGYSVFAGVGERTBEGNDLYHEM ESGVI NLKDATSKVALVYGGMEPPGARAF 240 MF1beta VALTGLTVAEVFROEGODVLLFI DNI FRFTGAGSEVSALLGRI PSAVGYOPTLATDNOTMERI TITKKGSI TSVAAI Y 320 MF1beta VALTGLTVAEVFROEGODVLLFI DNI FRFTGAGSEVSALLGRI PSAVGYOPTLATDNOTMERI TITKKGSI TSVAAI Y 320 MF1beta VALTGLTVAEVFROEGODVLLFI DNI FRFTGAGSEVSALLGRI PSAVGYOPTLATDNOTMERI TITKKGSI TSVAAI Y 320 MF1beta VALTGLTVAEVFROEGODVLLFI DNI FRFTGAGSEVSALLGRI PSAVGYOPTLATENGOLGERI TSTAKGSI TSVAAI Y 320 MF1beta VALTGLTVAEVFROEGODVLLFI DNI FRFTGAGSEVSALLGRI PSAVGYOPTLATENGOLGERI TSTAKGSI TSV AAI Y 320 MF1beta VPADDLTDPAPATTFAHLDATTVLSRAI AELGI YPAVDPLDSTSRI VDPNI VGS EHYDVARGVEKI LGDYKSLCDI I AL 400 MF1beta VPADDLTDPAPATTFAHLDATTVLSRAI AELGI YPAVDPLDSTSRI VDPNI VGS EHYDVARGVEKI LGDYKSLCDI I AL 400 MF1beta VPADDLTDPAPATTFAHLDATTVLSRAI AELGI YPAVDPLDSTSRI VDPNI VGS EHYDVARGVEKI LGDYKSLCDI I AL 400 MF1beta VPADDLTDPAPATTFAHLDATTVLSRAI AELGI YPAVDPLDSTSRI VDPNI VGS EHYDVARGVEKI LGDYKSLCDI I AL 400 MF1beta VPADDL	yF1beta yF1beta EF1beta TF1beta	EKVLDSGAPI RIPVGPELLGRI INVI GEPI DERGPI KSKLR-KPI HADPPSFAE OSTSAELLETGI KVVDLLAPYARGGK EKVLDTGGPI SVPVGRETLGRI INVI GEPI DERGPI KSKLR-KPI HADPPSFAE OSTSAELLETGI KVVDLLAPYARGGK LDVKDLEHPI EVPVGKATLGRI INVLGEPVDMKGELGEER-WAI HRAAPSYEELSNSGELLETGI KVVDLLAPYARGGK MEVI DTGAPI SVPVGEVTLGRVFNVLGEPI DLEGDI PADARRDPI HRPAPKFEELATEVELLETGI KVVDLLAPYI KGGK 	160 160 160
MF1beta GLFGGAGVCKTVLI MELI NNVAKAPGGYSVFAGVGERTREGNDLYHEM LEGVI NLKDATSKVALVYGGVMEPPGARAF, 240 YF1beta GLFGGAGVCKTVFI DELI NN AKAPGGYSVFAGVGERTREGNDLYHEM LEGVI NLEGE, SKVALVFGCVMEPPGARAF, 240 YF1beta VGLFGGAGVCKTVFI DELI NN AKAPGG SVFAGVGERTREGNDLYHEMKEI GVI NLEGE, SKVALVFGCVMEPPGARAF, 240 MF1beta VGLFGGAGVCKTVFI DELI NN AKAPGG SVFAGVGERTREGNDLYHEMKEI GVI NLEGE, SKVALVFGCVMEPPGARAF, 240 MF1beta VALTGLTI AE YF NDEEGGDVLLFI DNI FAFTGAGS EV SALLGRI PSAVGYOPTLATDNGT VGERI ITTIKKGS USVGAVI 320 MF1beta VALTGLTI AE YF NDEEGDVLLFI DNI FAFTGAGS EV SALLGRI PSAVGYOPTLATDNGT VGERI ITTIKKGS VI SVGAVI 320 TF1beta VALTGLTI AE YF NDEEGDVLLFI DNI FAFTGAGS EV SALLGRI PSAVGYOPTLATDNGT VGERI ITTIKKGS VI SVGAVI 320 TF1beta VALTGLTI AE YF NDEEGDVLLFI DNI FAFTGAGS EV SALLGRI PSAVGYOPTLATENGVLCRI ITTIKKGS VI SVGAVI 320 TF1beta VALTGLTI AE YF NDEEGDVLLFI DNI FAFTGAGS EV SALLGRI PSAVGYOPTLATENGVLCRI ITTIKKGS VI SVGAVI 320 TF1beta VPADDLTDPAPATTFAHLDATTVL SALAGRI VPAVDPL DSTSRI MDPN VGS EHTDVARGVCRI LCOVKSLDDI I AL 400 YF1beta VPADDLTDPAPATTFAHLDATTVL SALAGRI YPAVDPL DSTSRI MDPN VGS EHTDVARGVCRI LCOVKSLDDI I AL 400 YF1beta VPADDLTDPAPATTFAHLDATTVL SALAGRI YPAVDPL DSTSRI MDPN VGS EHTDVARGVCRI LCOVKSLDDI I AL 400 YF1beta VPADDLTDPAPATTFAHLDATTVL SALAGRI YPAVDPL DSTSRI MDPN VGS EHTDVARGVCRI LCOVKSLDDI I AL 400 YF1beta GVDELBEEDKLIVVS RARKI GFLSOPF VAEVFTGHLSKLIVVLKEI KO		\checkmark	
MF1beta yF1beta F1beta I GL FGGAGVGKTV U MELLI NINVAKA PIGGY SVF AGV GERTIRE GNDL YHE WE ETGVI NLE COLSKVAL VY GGVNEPP GARARE 240 U GL FGGAGVGKTV INVELLI NII AL ENS GYS VF AGV GERTIRE GNDL YHE WE TD SNU + DKVSL VY GGVNEPP GARARE 240 I GL FGGAGVGKTV I DE LI NNI AK HGGF SVF AGV GERTIRE GNDL YHE WE TD SNU + DKVSL VY GGVNEPP GARARE 240 I GL FGGAGVGKTV I DE LI NNI AK HGGF SVF AGV GERTIRE GNDL YHE WK DS VI SKTAWVF GGVNEPP GARARE 240 I GL FGGAGVGKTV I DE LI NNI AK HGGF SVF AGV GERTIRE GNDL YHE WK DS VI		· · · · · · · · · · · · · · · · · · ·	
MF1beta VALTGLTVAEYFRD0EGCOVLEFIDNIFRFTCAGSEVSALLGRIPSAVCYOPTLATDMGLQERITTTKKGSITSVGAUY 320 YF1beta VALTGLTVAEYFRD0EGCOVLEFIDNIFRFTCAGSEVSALLGRIPSAVCYOPTLATDMGLQERITTTKKGSVTSVGAUY 320 ZF1beta VALTGLTVAEYFRD0EGCOVLEFIDNIFRFTCAGSEVSALLGRIPSAVCYOPTLATENGQLQERITTKKGSVTSVGAUY 320 MF1beta VPADDLTDPAPATTFAHLDATTVLSRAJAELGIVPAVP5AVCYOPTLATENGQLQERITSTKTGSITSVGAUY 320 MF1beta VPADDLTDPAPATTFAHLDATTVLSRAJAELGIVPAVDPLDSTSRIMPPNIVGSEHYDVARGVGKILCDVKSLCDITAL 400 YF1beta VPADDLTDPAPATTFAHLDATTVLSRGJEGUYAEVPDLDSTSRIMPNIVGSEHYDVARGVGKILCDVKSLCDITAL 400 YF1beta VPADDLTDPAPATTFAHLDATVLSGGUYAELGIVPAVDPLDSTSRIMPNIVGSEHYDVARGVGKILCDVKSLCDITAL 400 YF1beta VPADDLTDPAPATTFAHLDATVLSGUYAELGIVPAVDPLDSTSROLDAVGGEHVDVASKVGETLCTYKSLCDITAL 400 YF1beta VPADDLTDPAPATTFAHLDATVVLSRGJEGUYPAVDPLDSTSROLDAVGGEHVDVASKVGETLCTYKSLCDITAL 400 YF1beta VPADDLTDPAPATFFAHLDATVVLSRGJEGUYAEVFTGHLGKVPLDSTSROLDAVGGEHVGVARKVQGTLCTYKSLCDITAL 400 YF1beta GMDELSEEDKLIVSRAKU DRELSOPFOVAEVFTGHLGKVPLDSTSROLDAVGGEHVGVARKVQGTLCTYKSLCDITAL 400 YF1beta GMDELSEEDKLIVSRAKU DRELSOPFOVAEVFTGHLGKVPLKETVKGFKALAGFUNGGEDVAKKAE 480 YF1beta GMDELSEEDKLIVSRAKU DRELSOPFOVAEVFTGHLGKVPLKETVKGFKALAGFUNGGEDVAKKAE 480 YF1beta GM	MF1beta yF1beta EF1beta TF1beta	I GLF GGAGVGKTVLI VELI NNVAKAHGGYSVF AGVGERTREGNDLYHEVI ESGVI NLKDATSKVALVYGQVNEPPGARAR I GLF GGAGVGKTVFI QELI NNI AKAHGGF SVF TGVGERTREGNDLYREVKETGVI NLEGE - SKVALVF GQVNE PPGARAR VGLF GGAGVGKTVNVELI RNI AI EHSGYSVF AGVGERTREGNDFYHEVTDSNVI DKVSLVYGQVNE PPGNRLR I GLF GGAGVGKTVLI QELI HNI AQEHGGI SVF AGVGERTREGNDLYHEVKDSGVI SKTAVVF GQVNE PPGARAR 170180	240 240 240 240
MF1beta VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRI PSAVGYOPTLATONGT NOERI TITIKKOSI TSVQAI Y 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRI PSAVGYOPTLATONGT NOERI TITIKKOSI TSVQAVY 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRI PSAVGYOPTLATONGTLDERI TITIKKOSI TSVQAVY 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRI PSAVGYOPTLATONGLDERI TITIKKOSI TSVQAVY 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRI PSAVGYOPTLATONGTLDERI TITIKKOSI TSVQAVY 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRIPSAVGYOPTLATONGTLDERI TSTAKOSI TSI CAI Y 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRIPSAVGYOPTLATENGQLČERI TSTAKOSI TSI CAI Y 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRIPSAVGYOPTLATENGQLČERI TSTAKOSI TSI CAI Y 320 VALTGLTVAEYF RDČEGOVILLFI DNI FRFTQAGSEVSALLGRIPSAVGYOPTLATENGQLČERI TSTAKOSI TSI CAI Y 320 VALTGLTVAEYF RDČEGOVILFI DNI FRFTQAGSEVSALLGRIPSAVGYOPTLATENGQLČERI TSTAKOSI TSI CAI Y 320 MF1beta VPADDLTDPAPATTFAHLDATIVLSRAI AELGI VPAVDPLDSTSRI DEV ARKVÇOPTLATENGQL CERI TSTAKOSI TSI CAI Y 320 VPADDLTDPAPATTFAHLDATIVLSRAI AELGI VPAVDPLDSTSRI DEV VAGEHYDVARGVCH LGVKSLODI I AI L 400 VPADDLTDPAPATTFAHLDATIVLSRAI AELGI VPAVDPLDSTSRI DEV VAGEHYDVARGVCH LGVKSLODI I AI L 400 VPADDLTDPAPATTFAHLDATIVLSRAI AELGI VPAVDPLDSTSRI DEV VAGEHYDVAGY ELAVAKOD 4400 VPADDLTDPAPATTFAHLDATIVLSRAI AELGI VPAVDPLDSTSRI DEV VAGEHYDVAGY ELAVAKOL 4400 VPADDLTDPAPATTFSHLDATIVLSRAI AELGI VPAVDPLDSTSRI DEV VAGYOPTLATIKERI KELDI I AI L 4000		****** ** *** . *. *****. ***. *. * **. ******	
MF1beta VPADDLTDPAPATTFAHLDATTVLSRAI AELGI YPAVDPLDSTSRI MDPNI VGSEHYDVARGVCKI LQDYKSLQDI AIL 400 VPADDLTDPAPATTFAHLDATTVLSRAI SELGI YPAVDPLDSTSRI MDPNI VGSEHYDVARGVCKI LQDYKSLQDI AIL 400 VPADDLTDPAPATTFAHLDATVLSRAI AELGI YPAVDPLDSTSRI MDPNI VGSEHYDVARGVCKI LQTYKSLQDI AIL 400 VPADDLTDPAPATTFAHLDATVLSRAI AELGI YPAVDPLDSTSRI MDPNI VGSEHYDVARGVCKI LQTYKSLQDI AIL 400 VPADDLTDPAPATTFAHLDATVLSRAI AELGI YPAVDPLDSTSRI MDPNI VGSEHYDVARKVCCTLQTYKSLQDI AIL 400 VPADDYTDPAPATTFSHLDATINLERKLAENGI YPAVDPLASTSRALAPEI VGEHYCVARKVCCTLQRYKELQDI AIL 400 MF1beta Fibeta GVDELSEEDKLTVSRARKI QRFLSQPFQVAEVFTGHLGKLVRLKDTVASFKAVLGGEDVVAKAA 480 GVDELSEEDKLTVERARKI QRFLSQPFFVAEVFTGHLGKLVRLKDTVASFKAVLGGEDVVAKAA 480 GVDELSEEDKLVVARARKI QRFLSQPFFVAEVFTGSPGKVVSLKDTI RGFKGI WGEYDNI PEDAFYWVGSI EEAVEKAK 480 GVDELSEEDKLVVARARKI QRFLSQPFFVAEVFTGSPGKVVSLKDTI RGFKGI WGEYDNI PEDAFYWVGSI EEAVEKAK 480 GVDELSEEDKLVVARARKI QRFLSQPFFVAEVFTGSPGKVVSLKDTI RGFKGI WGEYDNI PEDAFYWVGSI EEAVEKAK 480 GVDELSEEDKLVVARARKI QRFLSQPFFVAEVFTGSPGKVVSLKDTI RGFKGI WGEYDNI PEDAFYWGSI EEAVEKAK 480	MF1beta yF1beta EF1beta TF1beta	VALTGLTVAEYFRDOEGODVLLFI DNI FRFTOAGSEVSALLGRI PSAVGYOPTLATDNGTNOERI TTTKKGSI TSVOAI Y VALTGLTI AEYFRDEEGODVLLFI DNI FRFTOAGSEVSALLGRI PSAVGYOPTLATDNGLOERI TTTKKGSVTSVOAVY VALTGLTNAEKFRD-EGRDVLLFVDNI YRYTLAGTEVSALLGRNPSAVGYOPTLAEENGVLOERI TSTKTGSI TSVOAVY VALTGLTNAEYFRDEOGODVLLFI DNI FRFTOAGSEVSALLGRNPSAVGYOPTLAEENGVLOERI TSTKTGSI TSVOAVY VALTGLTNAEYFRDEOGODVLLFI DNI FRFTOAGSEVSALLGRNPSAVGYOPTLAEENGVLOERI TSTKTGSI TSVOAVY 250250	320 320 320 320
MF1beta yF1beta yF1beta TF1beta WF1beta yF1beta WF1beta yF1beta WF1beta yF1beta WF1beta yF1beta WF1beta yF1beta KLAEEHS 487 KLAAEAN 487			
MF1beta yF1beta TF1beta WF1beta TF1beta MF1beta SM	MF1beta yF1beta EF1beta TF1beta	VP ADDLTDP AP ATTF AHL DATTVLS RAI AELGI YP AVDPL DSTS RI VDPNI VGS E HYDVARGVCKI L CDYKSL ODI I AI L VP ADDLTDP AP ATTF AHL DATTVLS RGI SELGI YP AVDPL DSKS RLL DAAVVGCE HYDVASKVCETL CTYKSL ODI I AI L VP ADDLTDP SP ATTF AHL DATTVLS RGI SELGI YP AVDPL DSKS RCL DPLVVGCE HYDVASKVCETL CTYKSL ODI I AI L VP ADDLTDP SP ATTF SHL DATTVLS RCI ASLGI YP AVDPL DSKS RCL DPLVVGCE HYDVASKVCETL CTYKSL ODI I AI L VP ADDYTDP AP ATTF SHL DATTVLS RCI ASLGI YP AVDPL ASTS RALAPE I VGEE HYCVARKVCOTL CRYKEL ODI I AI L 330.340.340.350.360.370.380.390.400	400 400 400 400
MF1beta yF1beta EF1beta TF1beta MF1beta SMF1beta MF1beta MF1beta MF1beta MF1beta SMF1beta MF1beta MF1beta SMF1bet		₩	
MF1betaKLAEEHS487yF1betaKLAAEAN487EF1betaKL487TF1betaANGVEV-487	MF1beta yF1beta EF1beta TF1beta	GNDEL SEEDKL TVS RARKI ORFL SOPF OVAEVFTGHL GKL VPL KETI KGF OOI LAGEYDHL PE OAF YNVGPI EEAVAKAD GNDEL SE ODKL TVE RARKI ORFL SOPF AVAEVFTGI PGKL VRL KDTVASFKAVL EGKYDNI PEHAFYNVGGI EDVVAKAE GNDEL SEEDKL VVARARKI ORFL SOPFFVAEVFTGS PGKYVSL KDTI RGFKGI MEGEYDHL PEOAFYNVGSI EEAVEKAK GNDEL S DE DKL VVHRARRI OFFL SOPFFVAEVFTGG PGG YVPVKETVRGFKEI LEGKYDHL PE DAFRL VGRI EEVVEKAK 	480 480 480 480
MF1betaKLAE EHS487yF1betaKLAAE AN487EF1betaKL487TF1betaANGVEV-487			
	MF1beta yF1beta EF1beta TF1beta	KLAEEHS 487 KLAAEAN 487 KL 487 ANGVEV- 487	

Fig. S1. Sequence alignment of the β -subunit of F₁ from bovine mitochondoria (MF₁), yeast mitochondoria (yF₁), *Escherichia coli* (EF₁), and thermophilic *Bacillus* PS3 (TF₁). A red arrow indicates the position of mutation into cysteine for cross-link. A black arrow indicates the mutated position of the β E190D. Sequence alignment was carried out by using ClustalX 2.0.9 software (1). Amino acid residues of precursor peptides were not included for alignment.

1. Larkin MA, et al. (2007) Bioinformatics 23:2947-2948.

γ subunit

PNAS PNAS

MF1gamma yF1gamma EF1gamma TF1gamma	* ::: ::::::::::::::::::::::::::::::::	/ 80 80 / 80 80 0
MF1gamma yF1gamma EF1gamma TF1gamma	SSDRGLCGAI HSSVAKQNKS EAANLAAAGKEVKI I GVGDKI RSI LHRTHSDQFLVTFKEVGRRPPTFGDASVI ALELLN TSDKGLCGSI HSQLAKAVRRHLNDQPNADI VTI GDKI KNQLLBTHPNNI KLSI NGI GKDAPTFQESALI ADKLLSI STDRGLCGGLNI NLFKKLLAENKTWTDKGVQCDLAMI G-SKGVSFFNSVGGNVVAQVTGNG-DNPSLSELI GPVKVMLQ TSDRGLAGAYNSNVLRLVYQTI QKRHASPDEYAI I VI G-RVGLSFFRKRNMPVI LDI TRLP-DQPSFADI KEI ARKTVG 90100110120130140	160 / 160 A 160 - 160 0
MF1gamma yF1gamma EF1gamma TF1gamma	*	240 240 240 240 240
MF1gamma yF1gamma EF1gamma TF1gamma	CARNTANDNASKNASEMI DKLTLTF NRTRQAVI TKELI EI I SGAAALD 289 I SARRNANDNASKNASEMI DKLTLTF NRTRQAVI TKELI EI I SGAAALD 289 QAARNVANKAATDNGGSLI KELQLYNKARQASI TQELTEI VSGAAAV- 289 HAARNTANKNATDNANELI RTLTLSYNRARQAAI TQEI TEI VAGANALQ 289 250260270280	

Fig. S2. Sequence alignment of the γ-subunit of MF₁, yF₁, EF₁, and TF₁. A red arrow indicates the position of mutation into cysteine for cross-link. Blue arrows indicate the mutated positions to cysteine for biotinylation. Sequence alignment was carried out by using ClustalX 2.0.9 software (1).

1. Larkin MA, et al. (2007) Bioinformatics 23:2947-2948.

Fig. S3. The pausing positions of chimera $F_1^{\alpha\beta\gamma}$, $\alpha_3\beta$ (E190D)₂β(E391C)_γ(R84C) or $\alpha_3\beta$ (E190D)_β(E391C)₂γ(R84C). (A) Schematic images of the chimera $F_1^{\alpha\beta\gamma}$ molecules. (*B*) Typical angle distribution of a $\alpha_3\beta$ (E190D)_β(E391C)₂γ(R84C) molecule. Red bars represent the angular position of free rotation before cross-link. Blue bars represent pausing angular position after cross-link. (*Inset*) The trace of centroid of the bead image. (Scale bar: 100 nm.) (*C*) Histogram of angle deviation of pausing position from the nearest binding dwell angle on the clockwise side ($\Delta\theta_1$). (*D*) Histogram of angle deviation of pause position from the catalytic angle of βE190D. Because $\alpha_3\beta$ (E190D)_β(E391C)₂γ(R84C) paused at two catalytic angles that correspond to those of wild-type β-subunits, in other words at the position about ±120° from the catalytic angle of βE190D, distribution of absolute values is given. In C and D, data from two kind of chimera were combined. The total molecule and trial numbers were 11 [of them, two were $\alpha_3\beta$ (E190D)₂β(E391C)₂γ(R84C)] and 20, respectively.